SUMS OF FOURTH POWERS AND RELATED TOPICS

Koricur Kawapa! AND TREVOR D. WOOLEY?

1. INTRODUCTION

The continuing renaissance in the theory and application of the Hardy-Littlewood method has produced
significant advances in Waring’s problem, in particular with respect to our understanding of sums of
cubes, and sums of kth powers for larger k (see, for example, [16], [17], [18], [19], [22] and [24]). While
important progress has been made concerning sums of kth powers for smaller k, recent improvements
have been comparatively modest in scale, especially so far as fourth powers (biquadrates) are concerned.
The object of this paper is to make further progress on such additive problems involving biquadrates.
Recent developments elsewhere in Waring’s problem have made use of strong new bounds for mean
values of exponential sums over smooth numbers, and indeed these bounds are of utility in a plethora
of additive problems. In contrast to the latter methods, the ideas underlying the conclusions of this
paper make use only of an elementary polynomial identity, and are quite narrowly restricted in their
application to additive problems involving several biquadrates. Nonetheless, despite the simplicity of our
methods, we are able to tackle a number of problems which presently appear wholly beyond the reach
of the more sophisticated machinery depending on the use of smooth numbers. The ideas presented
below should therefore provide a useful addition to the arsenal of practitioners of the circle method.

The simplest consequence of our methods, which we deduce in §2, concerns the density of the set of
integers represented as the sum of 5 biquadrates.

Theorem 1. Let N(X) denote the number of natural numbers up to X that can be written as the sum
of 5 biquadrates. Then for each € > 0 one has

N(X)> X(log X)~ =,

The conclusion of Theorem 1 comes tantalisingly close to establishing that sums of 5 biquadrates
have positive density. While it is conjectured that sums of 4 biquadrates have positive density, the best
result along these lines available hitherto is that sums of 6 biquadrates have this property, such following
directly from Vaughan [18, §54 and 5]. Meanwhile, the lower bound N (X) > X!'=° with § = 0.0582...,
follows from [18, Theorem 4.3], and would appear to be the best such bound easily available from the
literature. We note, however, that slightly stronger bounds would follow, with sufficient effort, via the
techniques of [20], [22] and [25].

As experts will instantly recognise, our high level of control over sums of 5 biquadrates, transparent
from the conclusion of Theorem 1, leads to correspondingly powerful consequences for additive prob-
lems involving sums of 10 biquadrates, with cognate conclusions for problems involving 5 biquadrates.
Following some preliminary work on the associated exponential sums in §3, we investigate the latter
topics in §84, 5 and 6. We begin, in §4, by considering sums of 10 biquadrates and a kth power.

Theorem 2. Let k be a fized natural number.
(i) When 4 1 k, every sufficiently large integer can be written as the sum of 10 biquadrates and a kth
power;
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(ii) When 4 | k, every sufficiently large integer n satisfying n = r (mod 16) with 1 < r <9 can be written

(
(i

as the sum of 10 biquadrates and a kth power.

We note that when k£ = 3, the conclusion of part (i) of Theorem 2 is superseded by part (a)(i) of
Theorem 5 below, and when k£ < 2 this conclusion is weaker than results attainable easily through
existing methods. For comparison, when k > 5 and 4 1 k, the best methods available hitherto appear
incapable even of demonstrating that all large integers are the sum of 11 biquadrates and a kth power.
Of course, under the latter hypothesis on k, it is immediate from Vaughan [18, Theorem 1.2] that all
large integers are the sum of 12 biquadrates and a kth power. When 4|k the problem of representing
integers in the proposed manner is complicated by the local solubility condition arising from the prime
2, and a little thought reveals that when n = r (mod 16), with 12 < r < 15, then n cannot be written
as the sum of 10 biquadrates and a kth power. Further, when n =0 (mod 16), it is relatively simple to
find infinite families of integers, all divisible by 16, none of which can be written in the latter shape. The
conclusion of Theorem 2(ii) therefore leaves open the question as to whether or not large integers in the
residue classes 10 and 11 modulo 16 are represented in the proposed manner. While current philosophy
would lead one to conjecture that such integers are indeed represented in this way, our methods contain
an unfortunate artefact which in general entirely precludes their application to these latter congruence
classes.

The situation in Theorem 2 of particular interest is that with k£ = 4, which is tantamount to Waring’s
problem for biquadrates. In §5, by appealing to methods of Vaughan [18], we are able to recover the
congruence class 10 modulo 16 from the gap described in the previous paragraph. The remaining
congruence class 11 modulo 16 is, unfortunately, entirely beyond the grasp of our method.

Theorem 3. FEvery sufficiently large integer n satisfying n = r (mod 16) with 1 < r < 10 can be
written as the sum of 11 biquadrates.

We recall that Davenport [6] has shown that whenever R > 14, all large integers n with n = r
(mod 16) and 1 < r < R are the sum of R integral biquadrates, a conclusion successively improved on
by Vaughan [17], [18], to the extent that the condition R > 12 is now known to be permissible. As is
apparent, Theorem 3 narrowly misses showing that the latter condition can be weakened to R > 11.

As an easy consequence of the argument used to establish Theorem 2, we are able in §6 to establish
related results concerning sums of 5 biquadrates and a kth power.

Theorem 4. Let k be a fized natural number.

(i) When k is odd, almost all natural numbers can be written as the sum of 5 biquadrates and a kth
power;

ii) When 2|k but 41k, almost all natural numbers n satisfying n = r (mod 16) or n =8+ r (mod 16),
with 1 < r <5, can be written as the sum of 5 biquadrates and a kth power;

ii) When 4|k, almost all natural numbers n satisfying n = r (mod 16) with 1 <r <5 can be written as
the sum of 5 biquadrates and a kth power.

Once again, in the statement of Theorem 4, the congruence classes 6 and 14 modulo 16 in part (ii),
and 6 modulo 16 in part (iii), are excluded from admissibility purely as an artefact of our method, and
it is to be expected that the theorem should remain valid with their inclusion.

The scope for application of our methods to mixed additive problems involving biquadrates is great,
and for the purposes of illustration we confine ourselves here to sums of cubes and biquadrates. In §§7
and 8 we establish the conclusions contained in the following theorem.

Theorem 5.

(a) FEwvery sufficiently large integer is represented in each of the following forms:

(
(

(

i

as a sum of a cube and 9 biquadrates;

i
i) as a sum of 2 cubes and 8 biquadrates;

)
)

(iii) as a sum of 3 cubes and 6 biquadrates.
)

b

Almost all natural numbers can be written as the sum of a cube and 4 biquadrates.

Each of these conclusions is new, and apparently unattainable through existing methods. Meanwhile
similar conclusions for 4 cubes and 5 biquadrates, 5 cubes and 3 biquadrates, and 6 cubes and 2
biquadrates, respectively, are attainable through existing technology (see, in particular, Briidern [2]).

Before briefly describing the ideas underlying our method, we tarry a little longer to discuss appli-
cations of a more exotic flavour. First we remark on applications to the Waring-Goldbach problem
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for biquadrates. In §2 we make use of well-known lower bounds for the number of primes in 3-term
arithmetic progressions to establish a lower bound similar to that provided in Theorem 1.

Theorem 6. Let Ni(X) denote the number of natural numbers n up to X that can be written in the
form
n=pi+ps+ps+ i+ (2ps)*, (1.1)
with the p; prime numbers for 1 < j < 5. Then for each € > 0 one has
Ni(X) > X(log X) 8=,

Our analogue of Theorem 2 for prime numbers, which we establish in §9, involves a number of
congruence conditions which, as is the case for Theorem 2 itself, are presumably not all necessary (we
note, however, that if the primes used in the representation all exceed 5, then the congruence conditions
are indeed necessary).

Theorem 7. Let k be a fixed natural number with k > 2. Denote by My, the set of integers defined by
{neN:(n,10)=1andn #1 (mod 3)}, when k is odd,
M =4¢ {neN:n=41 or 89 (mod 120)}, when 2|k but 41k,
{neN:n =41 (mod 240)}, when 4|k.

Then every sufficiently large integer n € My, can be written in the form
8
n = ZP? + (2po)* + (2p10)* + pl1, (1.2)
j=1

with p; prime for 1 < j < 11.

Theorem 7 provides, in particular, an analogue of the Waring-Goldbach problem for biquadrates
with 11 almost-prime summands. We note that when £ = 2 we can reduce the number of biquadrates
used in the representation (1.2) to 8.

The proofs of Theorems 1 to 7 are all based on the elementary polynomial identity

vyt (@ +y)t =200 Fay +y?)?, (1.3)
which Dickson [9] attributes to F. Proth (see footnote 227 in Chapter XXII). The identity (1.3) permits
us to specialise 3 biquadrates in such a way that their sum may be treated as a square. While it
is true that the latter is in fact the square of the binary quadratic form z? + xy + y?, the values
assumed by this quadratic form are rather dense amongst the natural numbers, and thus we are able
to bring into play the powerful apparatus from the Hardy-Littlewood method designed for handling
mixed problems involving squares, biquadrates and so on (see the end of §2 for more general comments
on the application of (1.3) in such a setting). As is evident, regrettably, the specialisation implicit
in (1.3) constrains the sum of three biquadrates therein to be divisible by 2. Since the sum of three
unconstrained biquadrates can occupy the residue classes 0, 1, 2 or 3 modulo 16, it is apparent that
the use of (1.3) will necessarily impose additional congruence constraints within our applications, and
indeed it is this observation which accounts for the “loss” of admissible residue classes in Theorems 2, 3
and 4. A second unfortunate consequence of our use of the specialisation implicit in (1.3) concerns the
treatment of the major arcs in our applications of the Hardy-Littlewood method. Since, in essence, we
are replacing 3 variables by one, the total number of variables available to us is significantly reduced. In
particular, when it comes to bounding the exceptional sets arising in Theorems 4 and 5, we are forced
to tackle the convergence of the singular series, and related auxiliary sums, for quaternary and ternary
problems, respectively, the technical complexity of which is all too familiar to experts in this area. Such
difficulties in large part account for the length of this memoir.

By a fortunate coincidence, the structure of the identity (1.3) provides for applications of more
general type. Let f(t) be a quartic polynomial of the shape f(t) = at* + bt? + ¢, and let g(s) denote
the quadratic polynomial g(s) = 2as? + 2bs + 3c. Then one has the identity

f@)+fy) + fla+y) =g(=" +ay+y7),
and thus with little difficulty one is able to adapt the methods of §§2 to 9 to handle additive problems
involving polynomials of the shape f(t). Of course, the difficulties associated with the congruence
conditions inherent in such problems will differ from those involving pure biquadrates, sometimes to
our advantage. For the purposes of illustration, we record without proof the following consequence of
this circle of ideas.
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Theorem 8. Fvery sufficiently large integer n can be written in the form
n=(x1 - 227) + (23 — 225) + -+ + (a1, — 22y),

with z; € N (1 <14 <11).

Since for a fixed h the polynomial (h + x)° + (h — 2)° takes the special quartic shape discussed in
the previous paragraph, the astute reader will anticipate the possibility of applying our ideas even to
sums of fifth powers. We defer discussion of this prospect to a future memoir (see [13]), the applications
being of a somewhat technical nature.

We finish by remarking that the methods of this paper are relevant to the study of g(k) when
k = 4,5, where here, as usual, the function g(k) denotes the least integer s such that all positive
integers are the sum of s kth powers of non-negative integers. Formidable arguments of J.-R. Chen [5]
and Balasubramanian, Deshouillers and Dress (see, in particular, [1] and [8]) have shown, respectively,
that g(5) = 37 and ¢g(4) = 19. The methods described herein allow alternative proofs to be provided
for the latter conclusions, and indeed it is now possible to provide a significantly simpler proof that
g(4) = 19. Moreover, when s < g(k), one is also able to study the set of exceptional integers, with no
representation as the sum of s kth powers of non-negative integers. This is a topic to which we intend
to return elsewhere.

Throughout, the letter k denotes a fixed positive integer. We adopt the convention that whenever
the letter € appears in a statement, either explicitly or implicitly, then we assert that the statement
holds for every sufficiently small positive number €. The “value” of ¢ may consequently change from
statement to statement. The implicit constants in Vinogradov’s notation < and >, and in Landau’s
notation, will depend at most on k£ and e, unless stated otherwise. When x is a real number, we write
[z] for the greatest integer not exceeding x, and when n is an integer and p is a prime number we write
p"||n when p”|n but p"t! {n. We write d(n) for the number of divisors of the integer n, and write also
w(n) for the number of distinct prime divisors of n. Finally, we adopt the convention throughout that
any variable denoted by the letter p is implicitly assumed to be a prime number.

2. SUMS OF FIVE BIQUADRATES

We begin by exploring the consequences of the identity (1.3) for sums of five biquadrates, exploiting
for this purpose well-known mean value estimates concerning two squares and four biquadrates (see, for
example, Exercise 6 of [21, §2.8]).

The proof of Theorem 1. Let X be a large real number. Denote by B the set of integers of the form
2% + zy + y?, with z,y € Z. Also, when n is a natural number, let r(n) denote the number of
representations of n in the form

n =2m? +u* + ot (2.1)

with m € B and u,v € N. Then in view of (1.3), whenever r(n) > 0, one has that n is the sum of 5
biquadrates, and thus, on recalling the notation of the statement of Theorem 1,

NX)> > 1L (2.2)
1<n<X
r(n)>0
We next observe that when Y is large one has

card (BN [1,Y]) > Y(logY)~'/2

(it is standard and well-known that an asymptotic formula holds; for rather general results of this type
see, for example, [14]). Thus

O DY card(Bﬂ[l,%Xl/z]) > X(log X)~1/2, (2.3)

1<n<X 1<u,w<ix1/4

Moreover, the argument of the proof of Théoreme 2’(i) of [15] (see §2, and in particular the estimation
of W on p.235) provides the remarkably powerful estimate

Z r(n)? < X exp ((2 + £)+/(loglog X)(log log log X)) : (2.4)
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We may therefore apply Cauchy’s inequality in standard fashion to conclude from (2.3) and (2.4) that

3 12( S r(n)>2< 3 r(n)2>_1>> X(log X)~17¢,

1<n<X 1<n<X 1<n<X
r(n)>0

and thus the theorem follows immediately from (2.2).

In order to establish Theorem 6 we augment the argument of the proof of Theorem 1 with a lower
bound for the number of 3-term arithmetic progressions with prime entries lying in a fixed interval.
Before embarking on the proof we first record some notation. When m is a natural number, denote by
p(m) the number of representations of m in the form m = x? + zy + y?, with z, y and %(1‘ + y) all
prime numbers. Define the set of integers C by

C={meN:p(m)>0}. (2.5)

The proof of Theorem 6. Let X be a large real number. When n is a natural number, let r(n) on this
occasion denote the number of representations of n in the form (2.1) with m € C and with u,v prime
numbers. Then, again in view of (1.3), whenever r(n) > 0 one has that n is represented in the form
(1.1), and thus, on recalling the notation of the statement of Theorem 6,

MX)> > 1 (2.6)

1<n<X
r(n)>0

We first provide a lower bound for the cardinality of the set CN[1, X] for later use. The theory of the
binary Goldbach problem (see [10], or [21, Chapter 3|) demonstrates that for each fixed A > 0, there
is a fixed B > 0 such that for all large numbers x, all but at most x(logz)~* of the integers h with
%x < h < x have at least Bx(log ) ™2 representations in the form 2h = p; + p, with p; (i = 1,2) prime
numbers. Consequently, for each large number = one has

Z p(m) > Z Z 1> z(logz)™3. (2.7)

1<m<z h prime pi,p2 primes
1§h§%w1/2 p1+p2=2h

On the other hand, on writing R(P) for the number of solutions of the diophantine equation
2+ Ty +yi = 25 + xays + 3,

with 1 < x;,y; < P (i =1,2), one has

S7 plm)? < R, (23)

1<m<zx

As an easy exercise one may establish the upper bound R(P) < P?log(2P), and hence on combining
Cauchy’s inequality with (2.7) and (2.8) one obtains

1

S 1z (X am) (X pm?) > wllogn) .

1<m<zx 1<m<z 1<m<z
p(m)>0

Thus, on recalling the definition of r(n), one has

Z r(n) > Z card (C alif %X1/2]) > X (log X)~°.

1<n<X u,v primes
1<u,p<ixt/4

Consequently, since the upper bound (2.4) remains valid with the more restrictive definition of r(n) hold-
ing here, the conclusion of Theorem 6 follows from (2.6) through an application of Cauchy’s inequality
paralleling that concluding the proof of Theorem 1.
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The key ideas in the proof of Theorems 1 and 6 are susceptible to generalisation, as we now illustrate.
When t is a natural number, let w(¢) denote a non-negative weight satisfying the condition that for

each large number x one has
0< > wty<a® > wd), (2.9)
1<t<zx 1<t<z/2

and for each € > 0,

(Z w(t)>2>> zt/?e Z w(t)?. (2.10)

1<tz 1<tz

Let N*(z;w) denote the number of natural numbers up to z which can be written as the sum of 3
biquadrates and an integer ¢ with w(¢) > 0. Then the argument used to establish Theorem 1 is easily
adapted to establish the lower bound N*(z;w) > x'7°. Seen from this perspective, a slightly weaker
version of Theorem 1 is immediate on taking w(t) to be the number of ways of writing ¢ as the sum
of two biquadrates. Other choices for w(t) satisfying (2.9) and (2.10) may be lifted from the stock of
examples familiar to additive number theorists. For example, one may take w(t) to be the number of
representations of ¢ as the sum of a cube and a sixth power, or indeed the number of representations of
t as the sum of a biquadrate, an eighth power, ..., a 2/='th power, and two 2'th powers, for any fixed
[ with [ > 3. There will be associated conclusions concerning the representation of integers as sums of
6 biquadrates, two integers ¢ and to with w(¢;) > 0 (i = 1,2) and a kth power, for example, although
we stress that unwanted congruence conditions may be generated through the artificial nature of our
construction.

3. NOTATION AND PRELIMINARIES

In advance of our various applications of the Hardy-Littlewood method in the remainder of this
paper, we first record some notation, and also establish some auxiliary estimates associated with the
exponential sums arising from an identity equivalent to (1.3), namely

(z+y)* + (- y)* + (2y)" = 2(2* + 3y*)%. (3.1)
Let N denote a sufficiently large positive integer. Further, when k is a positive integer, write
Py =NF. (3.2)

We will frequently abbreviate P, simply to P. We write e(z) for €2™*, and introduce the exponential

sums
fr(a) = Z e(az®) and g(a) = Z e(2(z* + 3y%)%a). (3.3)
1<z <Py P/d<z,y<P
TFY

We approximate the latter sums on the major arcs by means of the generating functions

Ze (ar®/q), S(g,a) = ZZG (2a(r? + 35%)? /q), (3.4)

r=1 r=1s=1
and Py P P
on(B) = / e(Bt*)dt / (2(£2 + 3u)2B)dtdu. (3.5)
0 P/4 P/4

Lemma 3.1. Suppose that a € Z, ¢ € N and o € R satisfy (a,q) =1 and o« = S+ a/q. Then whenever
k > 2 one has
Si(a,a) < ¢'7VF, up(B) < Pe(1+ N|B)THVE,

and for each € > 0,
fr(@) — ¢ ' Sk(g,a)or(B) < ¢/*(1 4+ N8|/
Proof. For the proofs of these assertions, see, respectively, Theorems 4.2, 7.3 and 4.1 of [21].

It is convenient to record an estimate for S (g, a) sharper than that provided by Lemma 3.1 for use
in computations concerning the singular series.
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Lemma 3.2. Suppose that p is a prime number with p > k, and that a is an integer with (p,a) = 1.
Then one has
Sk(p,a) < (k—1)p'"%, Si(p",a) =p" " (2<h<k),

and
Sk a) =p" 1S (" a)  (h > k).
Proof. These estimates are immediate from Lemmata 4.3 and 4.4 of [21].
We next investigate approximations to the exponential sum g(a).

Lemma 3.3. Suppose that a € Z, ¢ € N and « € R satisfy (a,q) =1 and o« = f+a/q. Then
S(g,a) < ¢*?d(q), v(8) < P*(1+ NI, (3.6)
where d(q) denotes the number of divisors of q, and

g(a) — q7*S(q,a)v(B) < ¢P(1+ N|B]). (3.7)

Proof. We begin by bounding S(q,a) when (a,q) = 1, noting simply that by (3.4),

q q q

Z (2an?/q) ZZZB r? 4+ 35> —n)/q)

n=1 =1 r=1s=1

q

Z (q,2a,—1)T(g,1,0)T (g, 31,0), (3.8)
=1

Q

where we write

q
T(q,c,d) :Ze cy? +dy)/q).
y=1

But for each pair of integers, ¢ and d, one has

(g, e, d)* =) el(cl(@+y)* —2°) +d((x +y) —2))/q)

Consequently, on recalling that (a,q) = 1, it follows from (3.8) that

q
S(g,a) < ¢ (g,1) < ¢*?d(q),
=1

and this establishes the first estimate of (3.6).
In order to estimate v(3) we make use of the auxiliary estimate

A
/ Eo(1€%)de < min {A%, A2y 1Y (3.9)
B

valid for A > B > A > 0 and v € R. In order to establish this bound, we note first that the left
hand side of (3.9) is O(A?), by a trivial estimate. Moreover the change of variable v = ¢4, followed
by a partial integration, shows that the integral on the left hand side of (3.9) is O(A™2|y|™!). Having
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established (3.9), we next observe that by a change of variables in (3.5), it suffices to establish the
estimate

1,1
[ [ et +32pdedn < ming1, |57, (3.10)
1/4 J1/4
We dissect the square [%, 1} ? into the triangular regions

Bi={&ne[11]":¢<n} and Bo={(&n) €[4 1] :&>n}

By the change of variable £ = nw, we obtain

\//B (2(€ + 3P)? d&dn\—)/M/M)l 2u? + 3% )i

whence, by interchanging the order of integration and making use of (3.9), we find that

‘// (2(€2 + 32)? dfdn’ ’/ / 2(w? + 3)%'4) dndw‘
B 1/4 J (4w)—1

<</ min {1, (w* + 3) 7|8 7'} dw. (3.11)
0
Moreover an easy estimate for the final integral in (3.11) reveals that it is

O<min{1, |5|—1}).

The contribution from the region B; may be bounded similarly, on interchanging the roles of £ and 7,
and thus (3.10) follows on combining the latter estimates.

Finally, we establish the approximation (3.7). We may suppose that ¢ < P, for otherwise (3.7) is
trivial. Write ¢(r, s) = 2(r? + 3s%)2, and observe that

=D elag(r,s)/q)U(r,s) + O(P), (3.12)

r=1s=1

where

Ulr,s)= Y > elolx,y)B).

P/A<z<P P/4<y<P
z=r (mod q) y=s (mod gq)

But a standard application of the mean value theorem yields

w1 t1
U(r,s) :/_ /_t e(p(qt +r,qu+ s)pB) dtdu—l—O(q_lP+q_1P5\B|),

where
=[P =) i)~ bt =[(P=)jd+}
uo = [(3P —5) /a] =3, wi=[P—s)/d+3.

Consequently, a change of variables followed by an adjustment in the range of integration yields the
estimate

U(r,s) —q *v(B) < ¢ P+ q 'P°||. (3.13)
The desired conclusion (3.7) therefore follows on substituting (3.13) into (3.12), and recalling (3.4).

It will be convenient in what follows to refer to a mean value estimate contained, in all essentials, in
the upper bound (2.4).
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Lemma 3.4. For each € > 0 one has
1
/ l9(a)? fa(a)?| do < N2 (3.14)
0

Proof. On recalling (3.3) and considering the underlying diophantine equation, one finds that the inte-
gral on the left hand side of (3.14) is bounded above by the number of solutions of the equation

2(x7 4 3y1)® + ui +usy = 2(23 + 3y3)” + us + uy, (3.15)

with 1 < 2;,y; < P (i = 1,2) and 1 < u; < P (1 < j < 4). By means of elementary divisor
function estimates, the number of solutions of (3.15) with u + u3 = ui + u} is O(P*™¢). Meanwhile,
when uf + uj # uj + uj one finds that both of the integers (z% + 3y?) & (23 + 3y3) are divisors of
(uf + ul) — (ud + u}), whence for each fixed choice of the u; there are O(N¢) possible choices for
x? + 3y? (i = 1,2), and hence O(N?) possible choices for z; and y; (i = 1,2). Since there are O(P*)
available possibilities for the u; (1 < i < 4), we conclude that the total number of solutions of (3.15) is
O(P**¢), and the lemma follows immediately.

We also record a second even simpler mean value estimate.

Lemma 3.5. For each € > 0 one has

1
/ () 4da < N1+, (3.16)
0

Proof. On considering the underlying diophantine equations, it follows from (3.3) that the integral on
the left hand side of (3.16) is bounded above by the number of solutions of the diophantine system

mi —m3 =mj3 — mj, (3.17)
m; =27 +3y; (1 <i<4), (3.18)

with 1 < z;,y; < P (1 <4 <4). Suppose first that x;,y; (i = 3,4) satisfy the condition that ms # my.
Then by applying an elementary estimate for the divisor function, it follows from (3.17) that the number
of possible choices for m; and mg is O(P¢), whence by (3.18) there are O(P*) possible choices for x;, y;
(j = 1,2). Thus the total number of solutions of this type is O(P**¢). When xz;,y; (i = 3,4) satisfy
the condition that mg = my4, moreover, one has

r? +3yf =25+ 3y5 and z3 + 3y3 = 23 + 3y3,

and again elementary divisor function estimates show that the number of solutions counted here is
O(P**¢). Thus we conclude that the total number of solutions is O(N'*¢), and the proof of the lemma
is complete.

In advance of our imminent applications of the Hardy-Littlewood method in the forthcoming sections,
it is convenient to record notation for a generic dissection. Let ) be a large real number. When a € Z
and g € N, write
Mq(q.a) = {a € [0,1) : [ga —a| <QN'},

and take M(Q) to be the union of the intervals My(g,a) with 0 < a < ¢ < @ and (a,q) = 1.
Note that when @ < %N 1/2 " the intervals occurring in the latter union are disjoint. Finally, write

m(Q) = [0,1) \ M(Q).

4. SUMS OF 10 BIQUADRATES AND A KTH POWER

Our preparations complete, we now apply the Hardy-Littlewood method to establish Theorem 2.
Although many of the details will be considered by experts to be routine, we preserve some measure
of completeness in our exposition for the edification of those less expert in the application of the circle
method.
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The proof of Theorem 2. Let k be a fixed natural number with £ > 2, and let n be a large positive
integer. Write Ry (n) for the number of representations of n in the form

2 4
=3 ((@i+y)* + (@i —v)* + 2ua)* +Zz] +w, (4.1)
=1

with x;, y; natural numbers satisfying x; # y; (¢ = 1,2), and with z; (1 < j < 4) and w natural numbers.
We aim to establish that Rg(n) > 0, whence, as is evident from (4.1), the integer n is represented as
the sum of 10 biquadrates and a kth power.

It is convenient, for later use, to take N to be the large real parameter introduced in the previous
section, and to consider an integer n with N/2 <n < N. When B C [0, 1), define

Ri(n;B) = /% g(a)? fala)* fr(a)e(—na)do. (4.2)

Write X = Py, 9 = MM(X) and m = m(X). Then on recalling (3.1)-(3.3), it follows from orthogonality
that
Ri(n) > Ri(n; [0, 1)) = Ri(n; M) + Ry (n;m). (4.3)

The estimation of Ry (n;m) is routine. By Weyl’s inequality (see, for example, [21, Lemma 2.4]), one

has
sup | fr(a)] < PIex 2" « PN, (4.4)

acm

where 6 = (k2F+4)~1. In view of (4.2), therefore, we deduce from Lemma 3.4 that

R m) < sup fu(a) / l9(0)? fa()*| dos

& P Nte=20 o N1+1/k=5, (4.5)

In order to estimate Ry (n;9) we first introduce some additional notation. When [ is a natural
number, @ is a large real number with @ < %Nl/Q, and o € R, define Vj(a) = Vi(a; Q) by

Vi(as Q) = { ¢ 1Si(q,a)v (e —a/q), when a € Mg(q,a) C M(Q), (4.6)
0, otherwise.

Similarly, define W(a) = W(a;Q) b

¢*S(g,a)v(er = a/q), when o € Mq(q,a) € M(Q),

W@ Q) = { 0, otherwise. (47)

Then on combining trivial estimates for the relevant exponential sums together with the estimates
provided by Lemmata 3.1 and 3.3, one has for each a € 99t the upper bound

9(a)* fa(@)* fr(a) — W(e; X)?Vi(o; X)*Vi(es X) < XV/2TeP® + X PPy

But the measure of 9 is plainly O(X2N~1), so that by (4.2),
1
R )~ [ (0 X)PVafo X) Vi X)e(—na)da
0
< N1 (X5/2+€P8 —|—X3P7Pk> < NH1/k=5 (4.8)
It follows from (4.3), (4.5) and (4.8) that

Ri(n:[0.1)) = > Silg.n)Ji(g,m N, X) < NUHA, (4.9)
1<q<X
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where
Z g~ °5(q,a)S4(g,a)* Sy (g, a)e(—na/q), (4.10)
(@sp=1
and
g IXN1
Ji(q,n; N, X) :/ v(B8)%v4(B)*v(B)e(—npB)dB. (4.11)
—g—l1XN-1
Next write o
Tl = [ o(8P0a(8) un(B)el~Gn)ds, (4.12)

the absolute convergence of which is assured by means of Lemmata 3.1 and 3.3. By employing the latter
lemmata one finds from (4.11) and (4.12) that

Tila.mN.X) = () < N[ 1 v g,
g-1XN-1
so that whenever 1 < ¢ < X and 0 < # <2+ 1/k one has
Ji(g,m; N, X) = Ji(n) < N'TE(g/X)°. (4.13)

Moreover, again by Lemmata 3.1 and 3.3,

Ji(n) < N2+1/k / (1+NB) 3 VEag <« N1 FUE, (4.14)
0

On recalling (4.10), we find from Lemmata 3.1 and 3.3 that one has
Sk(q,n) < ¢ 7k, (4.15)

It therefore follows from (4.13) via yet another application of Lemmata 3.1 and 3.3 that

Y. Sulan)— Y Sule,n)Ji(an: N, X)

1<g<X 1<q<X
< N1—|—1/kz Z qe—l—l/k(q/X)O,
1<g<X
whence, on taking 0 = 1/(2k), we deduce that
Z Sk (qa ’I’L) - Z Sk(Qv n)‘]];k ((L n; N7 X) < N1+1/k_6' (416)

1<q¢<X 1<g¢<X
Finally, we write
oo q
=> ¢ Y S(g,0)*Sa(g,0)*Sk(q, a)e(—na/q).

=1 a=1
! (arg)=1

On recalling (4.15), we find that

Z Sk(q,n) < Z q_l—l/(%) < X~1/(2k)
1<g<X =x

It therefore follows from (4.14) and (4.16) that

Sy (n)Ji(n Z Su(q,n)Ji (q,n; N, X) <« N1F/k=0 4 N1+1/k x—1/(2k)
1<g<X
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whence by (4.9),
Ri(n:]0,1)) — Jp(n)Sp(n) <« Nk, (4.17)

The estimation of the singular integral Ji(n) is standard. By a change of variables one deduces from
(4.12) that

Ty = e [ N /B ¢ (B (B(7) — n/N)) dydp,

where B = [0,1]° x [ 1]4, and

1
g

B(y) =7+ 1+ + 2008 +397)7 + 2005 +398)%. (4.18)
Thus a straightforward application of Fourier’s integral formula confirms that

Je(n) > N1FVE, (4.19)

It remains to analyse the singular series G (n). It follows from the standard theory of exponential
sums (see, for example, the proofs of Lemmata 2.10 and 2.11 of [21]) that Si(g,n) is a multiplicative
function of q. Moreover, by (4.15), the series

q=1
is absolutely convergent, and for each prime number p one has
> Sulp"m) =1+ 0(p 171 C), (4:20)

h=0

The elementary theory of series of multiplicative functions consequently shows that

&r(n) = [ Tulp, n), (4.21)
P
where the product is over prime numbers, and
h=0

In order to handle the contribution of the small primes p in the product (4.21), we adapt the standard
treatment used in Waring’s problem, as described, for example, in [21, §2.6]. We observe first that by
the argument of the proof of [21, Lemma 2.12], one has for each H > 1,

H
> Se(p" n) = p~5 My (p™), (4.23)
h=0

where Mj, ,,(¢) denotes the number of solutions of the congruence
®(z) =n (mod q),

with ®(z) defined by (4.18), and with 1 < z; < ¢ (1 <i <9). It follows, in particular, that Ty (p,n) is
real and non-negative. By (4.20) and (4.21), moreover, there exists a positive absolute constant C' with
the property that

L < T Tetrmy <2 (1.2)
p>C

We aim to show, subject only to the condition that when 4|k one has n = r (mod 16) with 1 <r <9,
that for each prime p with p < C', one has

My (™) > p*7, (4.25)
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with the implicit constant absolute. From the latter lower bound, by means of (4.21)-(4.24), it follows
that 1 < & (n) < 1, whence by (4.3), (4.17) and (4.19) we may conclude that Ry (n) > N'*t1/*  This
will complete the proof of Theorem 2.

Before advancing to establish the above claim (4.25) we pause to recall some of the standard theory
from [21, §2.6], in a form appropriate to the application at hand. When p is a prime number, define

v =7(p) by

(4.26)

4, when p = 2,
v(p) =

1, otherwise.

Then whenever a is a 4th power residue modulo p”, one has that a is a 4th power residue modulo p?
for every t. Moreover the number of 4th power residues modulo p” is (p—1)/(4,p— 1) when p # 2, and
is precisely 1 when p = 2.

Consider first a prime number p with p > 2. Since for each natural number k, the monomial z*
represents 0 and 1 modulo p, the Cauchy-Davenport Theorem (see, for example, [21, Lemma 2.14))
shows that the number of distinct residue classes modulo p represented by the polynomial

Yi+ 2 +ys +yl+
subject to (y1,p) = 1, is at least

. p—1
4—— + 15 =p.
mln{p, (4,p—1) + } D

Thus, for every integer n, when p > 2 there is a solution of the congruence
®(z) =n (mod p?) (4.27)

with (21,p) = 1. When p = 2 we argue directly. Observe that the polynomial 2(x? + 3y?)? represents
the congruence classes 0 and 2 modulo 16. Also, when 4 { k, the set of values taken by the monomial
w¥ includes, at least, the residue classes 0, 1 and 9 modulo 16, and when 4|k the corresponding set
consists only of 0 and 1 modulo 16. Then a little thought reveals that ®(z) represents every residue class
modulo 16 when 4 t k, and represents the residue class » modulo 16, for 1 < r <9, when 4|k. Moreover,
one may take z; to be odd in the latter representations. Thus, when p = 2 there is a solution of the
congruence (4.27) with z; odd provided only that when 4|k one has n = r (mod 16) with 1 <r <9.

Given a solution, z, of the type described in the previous paragraph, and any natural number H, we
generate a solution x to the congruence

d(x)=n (mod p)

by choosing any integers z; with z; = z; (mod p?) for 2 < ¢ < 9, and then solving the ensuing
congruence modulo pf for x;. This congruence assumes the shape z{ = m (mod pf) with m a 4th
power residue modulo p?, so is soluble by the above discussion. Since the number of such possible
choices for x is evidently at least p>( =7 we deduce that for each prime p one has

My (p™) 2 p®H7) > p*H,
thus confirming (4.25). This completes the proof of Theorem 2.

5. SUMS OF 11 BIQUADRATES

In order to establish Theorem 3 we must resort to the use of smooth numbers. Before describing
the proof of the latter theorem, it is useful to record some notation. When X and Y are positive real
numbers, denote by A(X,Y) the set of Y-smooth numbers up to X, that is

AX,)Y)={ne€[l,X]NZ : pln and p prime implies that p < Y'}.
Write
h(a; P,R) = Z e(ax?).

z€A(P,R)
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Then it follows from Theorem 4.3 of Vaughan [18], together with the remark at the end of [24, §3], that
when 7 is a sufficiently small positive number and R < P", then

1
/0 |f1(a)?h(a; P,R)8|da < P5T4, (5.1)

with A a certain positive number satisfying A < 0.233.

The proof of Theorem 3. Take N to be the large real parameter introduced in §3, and let n be a fixed
positive number, sufficiently small in the context of the estimate (5.1). Consider an integer n with
N/2 <n < N, and let R(n) denote the number of representations of n in the form

4 4

n=(@+yt+@—yt+ e+ 2+

i=1 =1

with
1<z <P (1<i<4), wjeAPP") (1<j<4),

P/A<z,y<P and z#y.

We aim to show that whenever n is a large positive integer satisfying n = r (mod 16) with 1 < r <
10, then R(n) > 0, whence n is represented as the sum of 11 biquadrates. The latter conclusion is
tantamount to Theorem 3.

Abbreviate h(a; P, P") to h(a)). Then by orthogonality one has

R(n) = /0 () fa(@) h(a)re(—na)da. (5.2)

In order to estimate the integral in (5.2) we apply the Hardy-Littlewood method, dissecting the unit
interval into the sets

B =m(P/8), By=MP/8)\MY) and Bsz=MY),
where we write Y = (log P)/4. Thus
R(n) = Ri1 + Ry + R3, (53)

where

R; :/ gla) f1(a)*h(a)*e(—na)da (j =1,2,3). (5.4)
B

The contribution, R;, of the minor arcs to R(n) may be easily disposed of by appealing to Weyl’s
inequality (see, for example, [21, Lemma 2.4]). Thus, on applying Schwarz’s inequality in combination
with Lemma 3.4 and the inequality (5.1), and recalling that P = N'/*, we obtain

R, < aseupl | fa(a </ 9(c)® fa(a |d04) </ | faa |d04)

< PT/8te (N1—|—5)1/2 (P6+A) 1/2 < N3/2_517 (5.5)

1/2

where 461 = =z — —A 3¢ > 0.008.
We estlmate R2 by applying Holder’s inequality and making use of the trivial estimate |g(a)| =
O(P?), thereby obtaining
R, < P2I}1)/3, (5.6)

where

11:/ fa(@)[°da and 12:/ Ih(a)|2da (5.7)
By M(P/8)
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It follows from the argument of the proof of [18, Lemma 5.1] that
I, < P?ys-1/4, (5.8)

Meanwhile, by considering the underlying diophantine equation one has

I, < /|h |12da</ | f4(a)*h(a)®|da,

so that on applying the Hardy-Littlewood method we obtain
Iy, < I3+ 1y, (5.9)

where

I = / fa(@) h(a)|da and I, = / [ fa(@) h(0)®|da
M(P/8) m(P/8)

But by Weyl’s inequality (see [21, Lemma 2.4]) together with (5.1), we have

I4§< sup | fa(a / | fa(a)?h(a)®|da
acm(P/8)
2
< <P7/8+E> PO+A « psbz (5.10)
where §3 = 7 — A — 2¢ > 0.016. Moreover, on recalling (5.7), it follows from Holder’s inequality that

1/3
I3 < (/ \f4(a)|12da> 23,
M(P/8)

Then by (5.9) and (5.10), together with an application of [18, Lemma 5.1], we deduce that
I, < ps—92 (P8)1/3122/3’
whence I, < P8. On recalling (5.6) and (5.8), therefore, we conclude that
Ry < PY(P2ys=Y42/3(p8)1/3 « N3/2(log N)~1/%. (5.11)

It remains only to estimate R3. We begin with a little notation. Let p(z) denote Dickman’s function,
defined for real x by
p(x) =0 when <0,

p(r)=1 when 0<zx <1,
p is continuous for x > 0,
p is differentiable for x > 1,
zp (z) = —p(x —1) for = >1.

P
wo) = [ o (i) etsr)an,

and note that on following the argument sketched in the proof of [23, Lemma 8.6], one has

Define

w(B) < P (1+P48)) "

(5.12)
Suppose that a € Z and ¢q € N satisfy (a,q) = 1, and write 8 = o — a/q. Then [23, Lemma 8.5] shows
that when ¢ < P", one has

h(a) — ¢ 1S4(q, a)w(B) < loqg—PP (1 + P4|6|) ) (5.13)
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When @ is a large real number, and o € R, define U(«) = U(a; Q) by

¢ 'S54(¢,a)w(a — a/q), when a € Mg(g,a) C M(Q),

0, otherwise,

CNQ;Q)Z:{

and define Vi(a; Q) and W(w; Q) as in (4.6) and (4.7). Then on combining trivial estimates for the
relevant exponential sums together with the estimates provided by Lemmata 3.1, 3.3 and (5.13), one
has for each a € B3 the upper bound

YP
9(@) fa(a)*h(a)t = W (e; Y)Vi(e; Y)'U (s V) < @PQ +YP°
< YN°?(log N)~1.

But the measure of B3 is plainly O(Y2N~1), so that by (5.4) one has
1
Rs — / W(a;Y)Vi(a; V) U (a; V) e(—na)da
0
< YV3N?2(log N)~t < N*/%(log N)~ /4, (5.14)

Then on making use of (5.3), (5.5), (5.11) and (5.14), together with the definitions of W, V4 and U, we
may conclude thus far that

R(n)— Y S(g.n)J*(¢,n:N,Y) < N3/?(log N) /%, (5.15)
1<q<Y
where .
S(q; TL) - Z q_los(Q7 G>S4(q, a)Se(—na/q),
(a')=1
and
q_lYN_l
FamNy) = [ v(B)ua(B) w(B) e(—nB)dB.
7q—1YN—1
Next we write -
Jm) = [ o(B)ou(8) w(8) e(~np)ds, (5.16)
and . .
&n)=> ¢ Y S(g,0)S(g,a)%e(—na/q). (5.17)
q=1 a=1
(a,q)=1

By applying Lemmata 3.1, 3.3 and (5.12) to (5.16) and (5.17), it follows easily that J(n) < N3/2 and
S(n) < 1. Further, by following the argument applied in the proof of Theorem 2 leading to (4.17),
mutatis mutandis, one arrives at the conclusion

J(n)&(n) — > S(g,n)J*(q,n; N,Y) < N2y =14,
1<q<Y

whence by (5.15),
R(n) — J(n)&(n) < N3/2(log N)~1/2, (5.18)

The estimation of the singular integral is complicated by the presence of weights, specifically, the
implicit occurrence of the Dickman function. However, one may apply the argument of the proof of [26,
Lemma 9.10] to obtain the lower bound

J(n) > N3/2, (5.19)
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The singular series may be handled by the corresponding argument in the proof of Theorem 2. A little
thought reveals that in order to establish the lower bound

S(n) > 1, (5.20)

all that remains is to check that the congruence

2(x? + 3y? 2+Zz =n (mod 16)
=1

possesses a solution with z; odd for those n satisfying n = r (mod 16) for some r with 1 < r < 10. But
since 2(x? + 3y?)? takes the values 0 and 2 modulo 16, the latter is easily checked by hand. Collecting
together (5.18)-(5.20), we conclude that whenever n is a large integer with N/2 < n < N, satisfying
n =r (mod 16) for some r with 1 < 7 < 10, then one has R(n) > N3/2, and this completes the proof
of Theorem 3.

6. SUMS OF 5 BIQUADRATES AND A kTH POWER

The proof of Theorem 4 follows from the methods of the proof of Theorem 2 via an application of
Bessel’s inequality. A somewhat serious difficulty concerns the convergence of the singular series, and
this issue forces us to modify the endgame of our argument in several important respects.

The proof of Theorem 4. Let k be a fixed natural number with £ > 2, and let n be a large positive
integer. Write R}, (n) for the number of representations of n in the form

n=(z+y)"+@—y)*+ 2"+ 2+ 25+ w", (6.1)

with z, y natural numbers satisfying = # y, and with z; (j = 1,2) and w natural numbers. We aim to
establish that when X is a large real number, then R} (n) > 0 for every n lying in a certain collection
of congruence classes, and satisfying 1 < n < X, with at most o(X) possible exceptions. From this
assertion, as is evident from (6.1), almost all integers n in the aforementioned congruence classes are
represented as the sum of 5 biquadrates and a kth power.

We take N to be the large real parameter introduced in §3, and consider an integer n with N/2 <
n < N. When B C [0,1), define

Rin: %) = [ gl@)fule)fu@)e(-na)do. (62)
B
Write X = Pgg, 0 = M(X) and m = m(X). Then on recalling (3.3), it follows from orthogonality that
Ri(n) > Ry(n;[0,1)) = Ry (n; M) + Ry (n;m). (6.3)
We estimate R (n;m) in mean square by applying Bessel’s inequality, thereby obtaining
> RitmmP < [ lgt@)fila)? (o)l da.
N/2<n<N m
Thus, on recalling (4.4), we deduce from Lemma 3.4 that

> RimmP < (s @) [ lo(@? s o

N/2<n<N
& (P N~20)2NIte « N1H2/k=0 (6.4)
where § = (k2F+4)~1.
We next treat R (n; ). Recall the definitions (4.6) and (4.7). Then on combining trivial estimates

for the relevant exponential sums together with the estimates provided by Lemmata 3.1 and 3.3, one
finds that for each o € 9,

g() fa()? fr(a) = W (o X)Vi(o; X)*Vie(o; X) < X124 pt 4 X P3P,
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But the measure of 9 is plainly O(X2?N 1), so that
1
R )= [ W (05 X)Vi(0s X2V X)e(—na)da
0
< N7U(XP/2pt 4 XPPOR) < NYES,

We therefore deduce that

Ri(n; M) — > Si(g,n)Ji(g,n; N, X) < NVF2, (6.5)
1<g¢<X
where
Sk: q,n Z q 5 S4(q, ) Sk(qaa)e(_na/Q)7 (66)
(a')=1
and ) )
qg XN~
TiamN.x) = | v(B)va (8) v (B)e(~nB)dp. (6.7)
—gq—1XN-1
Next write -
Ti) = [ o(@ua(d)u(B)e(-ns)ds, (6.8)

the absolute convergence of which is assured by means of Lemmata 3.1 and 3.3. By employing the latter
estimates one finds from (6.7) that whenever 1 < ¢ < X and 0 < 6 < % + %, one has

o 3 1
Ji(g,n; N, X) — J; (n) <<N1+1/k/ en 1(1+Nﬁ)—§—zd5<<N1/k(q/X)9.
-1 XN~

Consequently, one has

Y. Silan)= Y Sila.n)Ji(g,m N, X)

1<g<X 1<g<X
< NYE N (g/X)"1Si(am)- (6.9)
1<q¢<X
Moreover, again by Lemmata 3.1 and 3.3,
Ji(n) < NV, (6.10)

In order to analyse the right hand side of (6.9), we note that the standard theory of exponential
sums reveals that S;(¢,n) is multiplicative (see, for example, the proofs of Lemmata 2.10 and 2.11 of
[21]). Thus

EACRDIE | REHCRDIE (6.11)
p"lq
Next we note that whenever (q,t) = 1, then by a change of variables one has S(g,a) = S(g,at**),
and similarly Sy(q,a) = S4(q,at**) and Si(q,a) = Si(g,at**). On substituting the latter into (6.6),
substituting a for occurrences of at**, we deduce that S;(q,n) = S;(q,1**n), where [ satisfies It = 1
(mod ¢q). Consequently, on summing over the values of [ with (I,q) = 1, we deduce that

Si(q,1*%n)

]

?(q)Sy.(q,n) =
i

2

q

0 Y S(a,a)S4(q,0)*Sk(g, )U (g, —an), (6.12)

(a?q) 1
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where we write

Eq: e(bl**/q).

=1

(La)=1
Plainly,

U(a.5) = (q.b)U (@Lb) ﬁ) . (6.13)

Moreover, Lemma 1.2 of Hua [11] shows that whenever p is a prime number, h is a natural number,
and b is an integer with (b, p) = 1, then one has

U(p",b) < p"/2.

Consequently, for each prime p and natural number h, it follows from (6.13) that whenever (a,p) = 1,
one has

U(ph, —an) < ph/Q(ph,n)l/Q. (6.14)

On combining (6.14) with the estimates provided by Lemmata 3.2 and 3.3, it follows from (6.12)
that, for each prime p and each natural number A, one has

Sp(",n) < hp~' M2 (p" m)2, (6.15)
whence by the multiplicative property (6.11) of S; (¢, n), we deduce that
Si(g,n) < ¢ ?(q,n)'?, (6.16)

where ¢ denotes the squarefree kernel of ¢, that is
= Hp-
pla

On substituting (6.16) into (6.9), we conclude that

2
S [Em Y Silen - > Silan)ilan N X)| < NEE(N,X),  (6.17)
N/2<n<N 1<q<X 1<g<X
where
E(N,X)=X"% " > (@1@) N @1g2)" T (q1,n) P (g2, )2 (6.18)

1<n<N 1<q1,g2<X
But an elementary argument provides the estimate

Y (@) (a2,m)"? < d(ar)d(a2)N, (6.19)

and hence, on taking # = 1/6, one finds from (6.18) together with an elementary estimate for the divisor
function that

E(N,X)<<NX*1/3< 3 qlq1/6>2. (6.20)

1<g<X

Moreover,
Y qlg < H(l + Zp*lf"/6><< 1. (6.21)
q=1 p h=1

We now collect together (6.3)-(6.5), (6.17), (6.20) and (6.21) to conclude thus far that

Z ’Rk( [0,1)) Z Si(g,n ‘ )« NUF2/E=8 L N2 k x —1/3, (6.22)
N/2<n<N 1<g<X
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Next we complete the singular series. Write

&i(n) =) Si(an), (6.23)
and
E(n,X)=6&;(n)— > Si(g,n). (6.24)
1<g<X

Then on applying the estimates (6.10), (6.16), (6.19) and (6.21) we obtain from (6.23) the upper bound

S e X < NS [ (0/X) oS )|

N/2<n<N N/2<n<N ¢>X

< NYEXT3ST ST ST (G16:) " i) (g1, m) 2 (ga0m) 2

1<n<N q1=1¢g2=1
< N1+2/kX_1/3.

We therefore conclude from (6.22) and (6.24) that

> IR [0,1)) — Si(n)J; (n)]* < N'T/ES, (6.25)
N/2<n<N

The estimation of the singular integral defined in (6.8) may be completed as in the argument of the
proof of Theorem 2 leading to (4.19). Thus we obtain for each n satisfying N/2 < n < N the lower
bound

Ji(n) > NVE, (6.26)

We analyse the singular series in a manner also similar to the corresponding treatment in the argument
of the proof of Theorem 2. First note that by (6.16) and (6.23) one has

Gi(n)— > Silen) < > (¢/X)V°S;(q.n)

1<g<X >X

< X—1/6 Z (j—lqs—l/3<q7n)1/2
q>X

< n1/2X—1/67

so that the series & (n) is absolutely convergent. Further, from (6.15) one has that for each prime
number p,

S8t n) =1+ 0(n 32,
h=0

so that we may use the standard theory of series of multiplicative functions to conclude that

&i(n) = [[ T (o, ), (6.27)
p
where -
Ti(p,n) = Y Si(p".n). (6.28)
h=0
Write

O (v) =1 + 75 + 75 +2(73 + 32)%,

and denote by M, (¢) the number of solutions of the congruence

®*(z) =n (mod q),
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with 1 < z; < ¢ (1 <i <5). Then by the argument of the proof of [21, Lemma 2.12], one has for each
H>1,

H
> Sip"n) = p~ M, (0"). (6.29)
h=0

It follows that T} (p,n) is real and non-negative, whence the same holds for &5 (n).
Next consider the contribution to &} (n) from those primes p in the product (6.27) with p t n. Then
from (6.28) and (6.15) we have

Tl:(p7 n) =1+ O(p_3/2),

whence, for some positive constant C', one has

3 < H Ti (p,n) < 2. (6.30)

When p > 3, we may apply the Cauchy-Davenport Theorem to obtain useful bounds. Note first that

when p t m, one has
p . 2 .
> (4 (757)) - (5) =+
b b

y=1

so that every non-zero residue class m is represented by the form x? + 3y2, and moreover the zero
residue class is plainly represented in the latter form. Next observe that for each natural number £, the
monomial z* represents 0 and 1 modulo p. Then the Cauchy-Davenport Theorem (see, for example, [21,
Lemma 2.14]) shows that the number of distinct residue classes modulo p represented by the polynomial

Yl + s + 5 + 207, (6.31)
subject to (y1,p) = 1, is at least
min < p 2p—_1+l(p—1)+1 =p
, (47p— 1) 2 .

Thus every residue class modulo p is represented by the polynomial (6.31) with (y;,p) = 1, so that in
view of our earlier observation, it follows that for every integer n, when p > 3 there is a solution of the
congruence

®*(z) =n (mod p7),

with (z1,p) = 1. Here v is defined as in (4.26). Observe also that the polynomial yi +v3 + 2(u? + 3v?)?
plainly represents all residue classes modulo 3 with (y;,3) = 1. Further, we note that the polynomial
2(z? + 3y?)? represents the congruence classes 0 and 2 modulo 16. Also, when 2 { k, the set of values
taken by the monomial w* includes, at least, the residue classes 0 and 2r — 1 modulo 16 (1 < r < 8),
and when 2||k the set of values includes, at least, the residue classes 0, 1 and 9 modulo 16, and when
4|k the corresponding set consists only of 0 and 1 modulo 16. Then a little thought reveals that ®*(z)
represents every residue class modulo 16 when 2 t k, represents the residue classes r and 8 + r modulo
16 for 1 < r < 5 when 2|k, and when 4|k represents the residue class » modulo 16 for 1 < r < 5.
Furthermore, in all of these representations except for the representation of the residue class 9 modulo
16 when 2||k, one may take z; to be odd. Moreover, in the latter exceptional case one may take z3 to
be odd.

Then in all cases, with the aforementioned exception, one may follow the argument completing the
proof of Theorem 2 to conclude that whenever n lies in the relevant congruence classes modulo 16, one
has for every prime p and natural number H,

M (™) 2 p =) > pt,
whence (6.28) and (6.29) together show that

Ti(p,n) =) Si(p"n) > 1. (6.32)
h=0
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Moreover, in the exceptional case one may again argue as in the completion of the proof of Theorem 2,
save that we now choose integers x; with z; = z; (mod 27) for i = 1,2,4,5, and then solve the ensuing
congruence ®(x) = n (mod 2) for z3. Thus, with modest adjustments to the argument, one again
establishes the lower bound (6.32) even in the exceptional case under consideration. Combining the
lower bound (6.32) with (6.30), we conclude that there is an absolute constant A > 0 such that

Gj(n) > A9 [A> AW > N4,

pln

Finally, we recall (6.25) and (6.26), and conclude that for each n with N/2 < n < N in the aforemen-
tioned residue classes modulo 16, one has

Ri(n;[0,1)) > NV/EZO/

with at most O(N'—9/ 2) possible exceptions. On summing over the dyadic intervals spanning [1, N],
and noting (6.3), we find that Theorem 4 follows.

7. MIXED SUMS OF CUBES AND BIQUADRATES

In this section we establish the results contained in part (a) of Theorem 5, and we also prepare
the field for our assault on the proof of part (b) in §8 below. We begin by dismissing part (iii) of
Theorem 5(a) almost trivially by recourse to Briidern [2, Theorem 1]|. Consider a large natural number
N, and let 7(N) denote the number of distinct integers of the form N — Z?Zl m$ with 1 <m; < %Nl/‘l
(1 < j < 5). Then by Theorem 1 of this paper, one has r(N) > N(log N)~2, and so [2, Theorem
1] shows that almost all of the integers thus represented are the sum of 3 cubes and a biquadrate.
Consequently N is represented as the sum of 3 cubes and 6 biquadrates.

In order to describe the proof of parts (i) and (ii) of Theorem 5(a) we require some additional
notation, and this will be useful also in §8. Take N to be a large integer, and define Py as in (3.2). We

then write M = Py = P31 / 7, and define the exponential sum F(«) by

Fla)= Y S calpn)?).

M<p<2M Ps/(2p)<z<Ps/p

Our Hardy-Littlewood dissection is defined as follows. We put X = N1 and when a € Z, ¢ € N
and (a,q) = 1, we write
M(g,a) ={ac[0,1) : |a—a/q < XN}

We take 9t to be the union of the intervals M(q,a) with 0 < a < ¢ < X and (a,q) = 1, and write
m = [0,1) \ M. Note that the intervals (g, a) comprising 9 are pairwise disjoint.

In order to establish the remaining parts of Theorem 5 we require a reasonably strong mean value
estimate for the cubic exponential sum F(«).
Lemma 7.1. We have

/ |F(a)|Bda < PyTeX—1/3, (7.1)
m

Proof. We establish the upper bound (7.1) by means of the Hardy-Littlewood method, and begin by
recalling some estimates of use on the major and minor arcs. First, by considering the underlying
diophantine equations, it follows from [4, Lemma 6] that

1
/ |F(a)|%da < P2 0372, (7.2)
0

Moreover, when a € R, a € Z and ¢ € N satisfy (a,q) = 1, ¢ < N'/? and |ga — a| < N~1/2_ it follows
from [3, Lemma 6] that

Fa) < P3P MY 4 PY (g + Niga — a]) /2. (7.3)
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We next describe the Hardy-Littlewood dissection. Recall the notation concluding §3, and put @ =
(PsM~1)3/4, Suppose first that o € m(Q). By Dirichlet’s Theorem on diophantine approximation,
there exist a € Z, ¢ € N with (a,q) = 1, ¢ < N2 and |ga — a| < N2, But a € M(Q), so that
necessarily one has either |gqa — a] > QN ! or else ¢ > Q. Then it follows from (7.3) that

sup |F(a)] < P§/4+EM1/4,
aem(Q)

whence by (7.2),

2 1
/ ]F(a)\gda<<< sup \F(a)]) / |F(a)[da < PS+eML, (7.4)
m(Q) aem(Q) 0

Next we note that if a € 9¥(Q) N'm, then there exist a € Z and ¢ € N with (a,q) =1, ¢ < @ and
lgqoe — a| < QN~L. But since o € m, one must have either | —a/q| > XN~ or else ¢ > X. Thus we
deduce from (7.3) that

sup  |F(a)| < PyEX Y3,
aeM(Q)Nm

Consequently, on noting that when a € 9M(Q) the second term on the right hand side of (7.3) dominates
the first, we obtain

[ r@rda < (_sw F@]) [ (F(@)[da
M(Q)Nm M(Q)Nm 93?(@)

<<P8+EX 1/3 Z Z q—7/3/ 1_|_N6) 7/3d6

1<q<
= Q( q)—l

< PPtex 13, (7.5)

The proof of the lemma is completed by combining (7.4) and (7.5).

The proof of part (i) of Theorem 5(a). Let N be a large natural number, and write R (N) for the
number of representations of N in the form

2
N =3 (@i +y)" + (2 — ) + (20)° +Zz + (px)® (7.6)
i=1
with
P/A<uzy,y; <P and z;#y, (1=12), 1<z <P (1<j<3), (7.7)

M <p<2M and P3/(2p) <z < P3/p.

We aim to establish that R;(/N) > 0, whence by (7.6) the integer N is represented as the sum of 9
biquadrates and a cube. When B C [0, 1), define

Ri(N;B) = /% g(a)?fi(a)®*F(a)e(—Na)da. (7.8)
Then by (7.6), (3.1) and (3.3) we have

We begin by treating the minor arcs. Applying Holder’s inequality to (7.8) in combination with
Lemmata 3.4, 3.5 and 7.1, we obtain

< ([ w@?srtiaa)” ([ o@rtaa) ([ ip@pan) "

< N13/12+5X 1/24' (710)



24 K. KAWADA AND T. D. WOOLEY

We now turn our attention to the estimation of Rq(N;9%). Suppose that « € R, a € Z and ¢ € N
satisfy (a,q) = 1 and ¢ < X, and write 8 = o« — a/q. We note that when M < p < 2M, one has p > X,
and so (ap®,q) = 1. It therefore follows from [21, Theorem 4.1] that in such circumstances, one has

3 L 5 Ps/p 5.3
> e((pr)°a)—q " Ss(q, ap )/ e(Bp°t®)dt
Ps/(2p)<a<Ps/p P3/(2p)
< q1/2—|—5(1 +N|BD1/2- (7.11)
Write

P3
s (8) = / e(BE3)dt. (7.12)

Ps3/2

Then by a change of variable, the integral in (7.11) is equal to p~'@3(8). Moreover, in view of the
coprimality of p and ¢, one has S3(q,ap?®) = S3(q,a). Consequently, when o € M(q, a) C M, it follows
from (7.11) that

F(a)= Eq_ng(q, a)vs(a —a/q) + O(MXHE), (7.13)
where
E=EM)= Y p'>(logN)"! (7.14)
M<p<2M

For future use, we define the function T'(«) by

T(a) = { Eq'S3(q,a)v3(cc — a/q), when o€ M(q,a) C M, (7.15)
0, otherwise,
and modify the definitions (4.6) and (4.7) by defining
V(o) = { ¢ S4(q,a)va(e — a/q), when a € M(q,a) C M, (7.16)
0, otherwise,
and
W(a) = { q~*S(g,a)v(e —a/q), when o€ M(q,a) C M, (7.17)
0, otherwise.

Recalling the estimates provided by (7.13) and Lemmata 3.1 and 3.3, one has for each a € M(q,a) C
I the upper bound

g(a)fi(a)®*F(a) — W(a)*V(a)*T(a) < X2POPy + X' T M PT.

Since 9 has measure O(X3N 1), we conclude from (7.8), (7.9) and (7.10) that

RAN) —EJH(N) D Sia,N) < N'¥/1zex -1/, (7.18)
1<g<X
where .
Si(q Y S(g,a)*Sa(g, )*Ss(g, a)e(—Na/q), (7.19)
(=1
and XN
JH(N) = /_ VB (BN )5 (7.20)
But on writing
B = [ o8-V, (7.21)
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we find from (7.12) and Lemmata 3.1 and 3.3 that J;(/N) is absolutely convergent, and, moreover, it
follows from (7.20) and (7.21) that

oo

JI(N) — J;(N) « N%/12 / (14+ NpB)~37/124g « N1B3/12x 2, (7.22)
X/N

Furthermore, a straightforward application of Fourier’s integral formula demonstrates that J; (N) >
N13/12 50 that together with (7.22) we have

NB/12 « J(N) < N¥3/12, (7.23)

Next write .

S1(N)=> ¢ * Y S(q,a)*Si(q,a)*Ss(q, a)e(—Na/q),
R

and note that by (7.19) together with Lemmata 3.1 and 3.3, we have
[S1(q, N)| < ¢~ /12, (7.24)

so that
Gl(N) - Z 81(Q7N> < Z |81(q7N)| < X€71/12'

1<g<X >X

We may therefore conclude from (7.18), (7.22) and (7.23) that
R1(N) — EJ1(N)S(N) « N13/12+e x—1/24 (7.25)

Provided now that we can show that &1 (N) > 1, it will follow from (7.14), (7.23) and (7.25) that
R1(N) > N/12(log N)~!, and so the proof of part (i) of Theorem 5(a) will be complete. But on
noting that for each prime number p the estimate (7.24) yields

N S N) =1+ 01812, (7.26)
h=0

we may apply the argument employed in §4 to analyse the singular series, mutatis mutandis, and thereby
obtain &1 (N) > 1. The only detail not already transparent concerns the solubility, for small primes p,
of the congruence

it 2s s+ 2 +2(22 +325) +2(224+328)* =N (mod p7), (7.27)

where v = y(p) again denotes the integer defined in (4.26). But the Cauchy-Davenport Theorem (see
[21, Lemma 2.14]) shows that when p > 3, the number of residue classes modulo p represented by the
polynomial

yi s s+’

subject to (y1,p) = 1, is at least

. p—1 p—1
3 = p.
mm{p’ <4,p—1>+<3,p—1>} P

Thus for each N the congruence (7.27) is soluble with (z1,p) = 1. The latter conclusion is immediate
when p = 3, and also follows easily when p = 2 on noting that w? represents all of the odd congruence
classes modulo 16. Consequently, as in the conclusion of §4, we find that > r- , Si1(p", N) is real and
positive for every integer N and prime p, and in combination with (7.26) we obtain the desired conclusion
that &1(N) > 1.

The proof of part (ii) of Theorem 5(a) is similar to that of part (i), though in many respects simpler,
and we therefore omit the uninteresting details.
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The proof of part (ii) of Theorem 5(a). Let N be a large natural number, and write Ro(N) for the
number of representations of N in the form

2
N =) ((@i+y)* + (@ —va)* + Qu)*) + 21 + 23 + (prw1)® + (paws)?, (7.28)
=1

with z;,y;, z; satisfying (7.7) for i = 1,2, and
M <p; <2M and P3/(2p;) <w; < P3/p; (j=12).

Then by (3.1) and (3.3) we have

RQ(N):/O g(a)?fi(a)?*F(a)*e(—Na)da. (7.29)

We aim to show that Ro(N) > 0, whence by (7.28) the integer NN is represented as the sum of 8
biquadrates and two cubes. When B C [0, 1), define

RQ(N;’B):/%g(a)2f4(a)2F(a)26(—Na)da. (7.30)

Then by (7.28), (7.29), (3.1) and (3.3) we have
Ra(N) =R2(N;[0,1)) = Ro(N; M) + Ro(N;m). (7.31)

Observe first that by applying Holder’s inequality to (7.29) in combination with Lemmata 3.4, 3.5
and 7.1, we have

Ra(N;m) < /rg< ) Fa(@)F (o) Pda

< ([ tot@rsatetan) ([ ot@aa) " ([ p(@ypan) "

< NT/6tex—1/12, (7.32)

Next, on recalling the notation defined by (7.15)-(7.17) and making use of (7.13) and Lemmata 3.1 and
3.3, we deduce that when o € M(q,a) C M, one has the upper bound

g(a)?fi(@)?*F(a)* = W(a)*V(a)*T(a)* < X?P°P] + X" M P3PS,
Consequently, since 9 has measure O(X3N 1), it follows from (7.30)-(7.32) that

Ra(N) —Z2I5(N) 3 Silq.N) < NT/6+ex—1/12, (7.33)
1<¢<X

where = is defined as in (7.14),
q
82 -8 Z S q; 54 Q7 ) S3(Q7 a)26(—Na/q),

(D=1

and

X/N
J(N) = / o(8)20s(8)25(8)2e(— N B)d.

—-X/N

In the present problem we have a cubic summand in place of the biquadratic summand occurring
in the argument of the proof of part (i), and this causes more rapid convergence in both J(N) and
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Si(q, N) when i = 2 as compared to the situation with ¢ = 1. Thus the argument of the proof of part
(i) of Theorem 5(a) is readily adapted to establish that

N7/6 « J3(N) < N7/8, (7.34)

and
Ga(N)— Y Sa(q, N) < X716, (7.35)
1<g<X
where we write - .
&:(N) =S 0 3 S(g,0)284(, 0)Ss(q, @) e(—Na/q).
g=1 a=1
(a,q):l

The aforementioned argument is also readily adapted to show that &o(N) > 1. The only detail which
requires verification concerns the solubility, for small primes p, of the congruence

by b 2 4 2(22 +322)2 +2(22 +322) =N (mod p7). (7.36)

But when p > 3, the Cauchy-Davenport Theorem (see [21, Lemma 2.14]) demonstrates that (7.36) is
soluble with (z1,p) = 1, and moreover such a conclusion may be verified directly when p = 2 or 3.
Thus, as in the argument of the proof of part (i) of Theorem 5(a), we find that G5(N) > 1, whence by
(7.33), (7.34) and (7.35) we may conclude that

Ra(N) > N7/%(log N)~2.
This completes the proof of part (ii) of Theorem 5(a).

8. SUMS OF 4 BIQUADRATES AND A CUBE

Experts will recognise that Theorem 5(b) may be expected to follow directly from the argument of
the proof of part (ii) of Theorem 5(a) via a suitable application of Bessel’s inequality. In this instance,
however, our use of the identity (3.1) leaves us in a ternary additive situation, and consequently the
analysis of the associated singular series presents considerable technical complications. We arm ourselves
in advance of such skirmishes with some useful technical lemmata.

When ¢ and n are natural numbers, write

q

Alg,n) =q~* > S(g,a)S4(q,a)S5(q, a)e(—na/q). (8.1)
(al)=1

Lemma 8.1. When p is a prime number and h is a natural number, one has

A(p",n) < hp™"/12.

Moreover, when 1 < h < 12, one has the potentially sharper estimate

A", n) < p~p,n)'/2.

Proof. The first estimate of the lemma is easily established by applying Lemmata 3.1 and 3.3 to (8.1),
thus obtaining
A(p",n) < p~ "o (p") (hp®"/2) (pP"/*) (p*"/3) < hp~"/12.

We next establish the second estimate, noting first that the argument of §6 leading to (6.12) on this
occasion yields, for each natural number ¢, the estimate

q

H)A(gn) = Y Alg,1”n)=q* > S(q,a)84(g,a)Ss(q,a)U(g, —na), (8.2)
=1

a=1
(l,q)=1 (a,q)=1
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where

On applying [11, Lemma 1.2], one finds that the estimate (6.14) remains valid, and thus whenever
(a,p) =1 one has
U(p", —na) < p"*(p",n)"/? <p" =2 (p,n)'/2. (8-3)

Moreover, Lemma 3.3 shows that whenever (a,p) = 1 one has S(p",a) < hp?"/?  and Lemma 3.2
provides the estimates
Sy(p",a) < p™ and  S3(p",a) < p°*, (8.4)

where 1y =51 =1/2,ry =890 =1,1r3 =53 =2, 74 =3 and s4 = 5/2, r5 = 7/2 and s5 = 3, and where
rn, = 3h/4 and s, = 2h/3 for h > 6. On substituting (8.3) and (8.4) into (8.2), we obtain
A(p",n) < hp™(p,n)"/?,

where t, =rp, + s, — (3h +1)/2. When 1 < h <5 it is easily verified by hand that ¢, < —1, and when
h > 6 one has

Thus t;, < —1 for every natural number A, and the second part of the lemma follows immediately.

Armed with the estimate for A(g,n) provided by Lemma 8.1, we next investigate the convergence
of a truncated form of the singular series which arises in our subsequent investigations. When n is a
natural number and Z is a positive real number, we write

T(p,n) =Y A", n), (8.5)
h=0

and

P(n,Z) =[] T(p.n). (8.6)

p<Z

Lemma 8.2. Let N be a large real number. Then whenever Z s a large real number with Z < N, and
n s a natural number with 1 < n < N, one has

P(n,Z) > exp(—+/log N).

Proof. We begin by investigating the contribution of the large primes to the product (8.6). By Lemma
8.1, we have

00 11 oo
S AR ) < Y p o) 2+ S M < (p, ),
h=1 h=1 h=12

whence by (8.5) there exists an absolute constant B such that
T(p,n) — 1| < Bp~"(p,n)"/>.

But the latter estimate yields

II Ten=> ] a-BpY [] 0—Bp '), (8.7)
2B7<p<z 2B?<p<z p>25°
pln

It follows from Merten’s formula (see, for example, [7]) that the first product on the right hand side of
(8.7) is > (log Z)~B. Meanwhile, on noting that by the Prime Number Theorem one has

Vvlog N
—1/2 —1/2 g
E p < E P < loglog N’ (8.8)

pln p<2log N
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and moreover that log(1 — z) > —4z for 0 < z < 1/\/5, we deduce that

H (1-Bp~Y?%) > exp<—4B Zp_1/2)>> exp(—e+/log N).

p>2B? pln
pln

Consequently, we may conclude from (8.7) that
H T(p,n) > exp(—ey/log N). (8.9)
2B2<p<Z

In order to establish the lower bound for P(n, Z) claimed in the statement of the lemma, it suffices
now to show that T'(p,n) > 1 for the primes p with p < 2B2. But, as in the argument of §6, one has
for each natural number H,

H
> AW n) =p M ("), (8.10)
h=0

where M*(p™) denotes the number of solutions of the congruence
2(z% +3y*)? + 2t +w* =n  (mod pf), (8.11)

with 1 < z,y, z,w < p*. Thus we may follow the argument of §6 to show that M (pf) > p?# provided
only that when H = =, the congruence (8.11) is soluble with (z,p) = 1. Moreover the same conclusion
M (p™) > p3H holds also when p = 2 provided that (8.11) is soluble when H = v with w odd.

Suppose first that p > 3, and note that the discussion of §6 leading to (6.31) shows that the polynomial
22+ 3y? represents all residue classes modulo p. Then the Cauchy-Davenport Theorem (see [21, Lemma
2.14]) shows that the number of distinct residue classes represented by the polynomial

2(z% + 3y?)? + 2* 4+ w?,
subject to (z,p) = 1, is at least min{p, x(p)}, where

p—1 p—1 p—1
+ +
2 (47]9_1) (37]9_ 1)

1 1 1
B (5+ (3,p—1) * (4,p—1))(p_1)' (8.12)

k(p) =

When p > 13, therefore, one has

> 212y

- 12 -

and moreover one may verify from (8.12) that x(p) > p also when p = 5, 7 and 11. We may thus
conclude that for each natural number n, the congruence (8.11) is soluble when H = v with (z,p) = 1.
Furthermore, when p = 3 the latter conclusion is essentially trivial, and thus we deduce that M*(pf) >
p>H whenever p > 2. When p = 2 we note merely that w? represents all of the odd congruence classes
modulo 16, and so the congruence (8.11) is necessarily soluble with w odd. Thus, as in the argument
following (6.32), we again deduce that M (2%) > 23H_ Collecting together the conclusions of this

paragraph, we may conclude from (8.10) that

K(p)

H

T(p,n) = lim 3 AQp".n)>1
h=0

for every prime p, whence the conclusion of the lemma follows immediately from (8.9).

Having established a lower bound for a truncated product associated with the singular series, we
next investigate a related truncated sum. When n is a natural number and X is a large real number,

write
&(n,X)= Y Algn). (8.13)

1<q<X
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Lemma 8.3. Suppose that N is a large real number, and let X = N*/190. Then for all but O(N exp(—+/Tog N))
of the integers n with N/2 <n < N, one has

S(n, X) > exp(—+/log N).

Proof. Tt follows from the standard theory of exponential sums (see, for example, the proofs of Lemmata
2.10 and 2.11 of [21]) that A(g,n) is a multiplicative function of q. Write Y = exp(y/log N), put
Z =Y and define

D=D(Z)={qeN : plg=p< Z}.

Suppose that n is a natural number with N/2 <n < N. Then on recalling (8.6) and (8.13), we have

S(n,X)—Pn,Z) =61(n) — Sz(n), (8.14)
where
Si(n) = Z A(g,n) and G6y(n)= Z A(gq,n). (8.15)
Z<q<X q>X
q¢D qeD

We first estimate G5(n). Put n = 300/y/log N. Then for ¢ > X we have 1 < (¢/X)" = ¢"Y 3, and
thus the multiplicative property of A(q,n) ensures that

Ga(n)| <Y ¢"A(g,n)| =Y [] (Zp"”h‘l(ph,n)I)- (8.16)

qeD p<Z h=0

But when p < Z, Lemma 8.1 yields the estimate

o0
S PMAR" n)| — 1< p~ 2, n) 2 < i (pm) V2,
h=0

and thus it follows from (8.8) and (8.16) that for some absolute constant B,
Ga(n)| <Y [T+ Bp H ][0+ Bp™ /%) < Y2 (8.17)

p<Z pln

Next we turn our attention to G1(n). For the sake of concision, write

S(q7 (Z) = S(Qa (1)54((], CL)Sg (Qa Cl)-
Also, denote by ||3]| the distance between 5 and the nearest integer. Then by (8.1) and (8.15) we have
>, lEsmP= 3 > (@) Ve, (8.18)
N/2<n<N Z<q<X Z<r<X
q¥¢D ré&D

where

Vig,r) = zq: T S(q,a)S(r, —b) Z e((é—g>n>. (8.19)

r q
L N/2<n<N

a=1 b=
(aaq =1 (bar)

When ¢ < X, r < X and a/q # b/r, one has
a b

> (qr) P> X2,
q T

and in such circumstances the innermost sum in (8.19) is O(X?). Thus we deduce from (8.18) that

Y. Bl <N Y ¢ Y [S@a)f

N/2<n<N Z<q<X a=1
(a,q)=1

Pe(Y Y el

Z<q<X =
(avq)zl
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But Lemmata 3.1 and 3.3 provide the estimate S(¢,a) < ¢**/12%¢, and so

D, &P <N T +X2< 3 qs—1/12)2

N/2<n<N >Z 1<g¢<X
< NZ&7V6 4 X4 <« NY 2, (8.20)

Note that (8.20) implies that |&1(n)] < Y =2 for all but O(NY =) values of n with N/2 <n < N.
Thus, on collecting together (8.14), (8.17), (8.20), and recalling Lemma 8.2, we deduce that

S(n, X) > exp(—+/log N) + O(Y ~2)

for all but O(NY ~1) values of n with N/2 < n < N. This completes the proof of the lemma.

Our analysis of the truncated singular series now complete, we may swiftly dispose of the proof of
Theorem 5(b).

The proof of Theorem 5(b). Let N be a large real number, let n be a natural number with N/2 <n < N,
and let R3(n) denote the number of representations of n in the form
n=(z+y)'+ (@ -y + 2"+ 2+ ()’ (8.21)
with
P/A<z,y<P and z#y, 1<z<P,
M <p<2M and P3/(2p) <w < Ps/p.

We will show that R3(n) > 0 for each n with N/2 < n < N, save for at most O(N exp(—+/log N))
possible exceptions. By summing over dyadic intervals, it follows from the latter assertion, together with
(8.21), that almost all positive integers are the sum of four biquadrates and a cube, whence Theorem
5(b) follows. When B C [0, 1), define

Ra(n; %):/%g(a)f4(a)F(a)e(—na)da. (8.22)

Then by (8.21), (3.1) and (3.3) we have
Rs(n) =R3(n;[0,1)) = Ra(n; M) + R3(n;m). (8.23)

We first treat the minor arcs m, noting that an application of Bessel’s inequality combined with
(7.32) yields

S [Ra(mim)f? < / lg(0) f4(0) F(o) Pdar < NT/6+< X =1/12. (8.24)
N/2<n<N m

Next, on recalling the notation defined by (7.15)-(7.17), and making use of (7.13) and Lemmata 3.1 and
3.3, we deduce that when o € M(q, a) C M, one has the upper bound

g(a) fa(a@)F(a) — W(a)V ()T (o) < X?P?P3 + X T M P>,
Then since M has measure O(X3N 1), it follows from (8.22)-(8.24) that

> IRs(n) — ZH S, X)P < NOEX 2, (8.25)
N/2<n<N

where = and &(n, X) are defined, respectively, as in (7.14) and (8.13), and

X/N
Ji(n) = / o(B)0a(B)is(8)e(—nB)dp. (8.26)

—X/N
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Write -
Ja(n) = / o(8)01(8)53(8)e(—nB)dB.

Then by (7.12) and Lemmata 3.1 and 3.3, one has

J3(n) — J5(n) < N13/12/ (1+ NpB)~19/124 « NY12x~1/2, (8.27)
X/N

Furthermore, a straightforward application of Fourier’s integral formula demonstrates that Js(n) >
N1/12 50 that together with (8.27) we have

NY12 « Jy(n) < NY12, (8.28)

But the inequality (8.25) shows that for every n satisfying N/2 < n < N, with at most O(N exp(—+/log N))
exceptions, one has v/
Ra(n) — EJ5(n)S(n, X) < NV/2X 71/,

Thus, since by (8.27) and (8.28) one has
Jék(n) > N1/12 + O(]\[l/lQ)(*l/Q)7

and since by Lemma 8.3, one has for every n satisfying N/2 < n < N, with at most O(N exp(—+/log N))
exceptions, the lower bound

S(n, X) > exp(—+/log N),

we may conclude that for every integer n satisfying N/2 < n < N, with at most O(N exp(—+/log N))
exceptions, one has

Rs(n) > NY2 exp(—24/log N).

Consequently the assertion made in the opening paragraph of this proof does indeed hold, and so the
proof of Theorem 5(b) is complete.

9. AN APPLICATION TO A PROBLEM WITH PRIME VARIABLES

Our objective in this section is the proof of Theorem 7. Since the central variables under consideration
will now be prime numbers, it is necessary to introduce some additional notation. We take N to be the
large real parameter introduced in §3, and define the generating functions

fil@)= 3 elap®) and g*@)= > e@@mia), (9.1)
1<p<Py 1§m§\éﬁ/3
me

where the first summation is over prime numbers, and C is the set of integers defined in (2.5). We require
an approximation to f;(«) on the major arcs of a Hardy-Littlewood dissection, and this is supplied in
all essentials by Hua [12]. When a € Z, ¢ € N and 8 € R, we write

dt

—_—. 9.2
logt (9:2)

q Py,
Sta)= > e(ar*/q) and vi(B) = / e(Bt%)

(r,q)=1

Lemma 9.1. Suppose that a € Z, ¢ € N and B € R, and that (a,q) = 1. Then
Si(g,a) < g2 and vi(B) < Pe(1+ NIB|)~V".

Suppose further that o € R, and that for some fized positive number A, one has |ga—a| < (log N)AN~!
and q¢ < (log N)*. Then

fi(@) = ¢(a) ™" Si(a, a)vi (e — a/q) + O(Py exp(—cy/log N))
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for some ¢ > 0, where here we write ¢(q) for Euler’s totient function.
Proof. The lemma follows immediately from Lemmata 7.14-7.16 and 8.5 of [12].

Before fully engaging the proof, it is useful also to record a lower bound for an auxiliary singular
series. When m is a natural number, write

&i(m) =>_Si(g,m), (9.3)
where .
Si(e,m)=o(q)™° Y Silg,a)*S}(g,a)e(—ma/q). (9.4)

Il
—

1

=2
Il

a
(a,q

Further, define the sets M for i = 1,2,3 by
MDY ={meN : m=1 (mod2), m#1 (mod 3) and m % —1 (mod 5)},

M ={meN : m=5 (mod8), m=2 (mod 3) and m =0 or 3 (mod 5)},
MB) = {meN : m=5 (mod 16), m =2 (mod 3) and m =0 (mod 5)},

and when k is a natural number, define the set Mj by

MW when k is odd,
M; =< M when 2|k,
M®B) | when 4|k.

Lemma 9.2. For each natural number m one has & (m) > 0. Moreover, whenever m is a natural
number with m € Mj and m # 1 (mod 13), one has &} (m) > 1.

Proof. We note first that by the standard theory of exponential sums, one has that S;(¢,m) is a
multiplicative function of ¢ (see [12, Lemma 8.1]). Moreover, on recalling the notation introduced
in (4.26), it follows from [12, Lemma 8.3] that S}(p",a) = 0 when (p,a) = 1 and h > ~(p). Thus
S;(p",m) =0 for h > v(p), and so it follows from (9.3) that

&i(m) =[] T (0, m), (9.5)
where
~v(p)
Ti(p,m) = > Si(",m). (9.6)
h=0

Furthermore, on writing Mj;  (p) for the number of solutions of the congruence
o] +xy+as+ai ok =m  (mod p?), (9.7)
with 1 <z; <p¥ and (z;,p) =1 (1 < j <5), it follows from (9.6) that
T (p.m) = p"¢(p7) "> Mj; 1, (p)- (9.8)
In particular, therefore, one has for each prime p that T} (p,m) is real and non-negative, whence
S (m) > 0. This completes the proof of the first assertion of the lemma.

We next dispose of the contribution of the large primes to &;(m). By applying the estimate supplied
by Lemma 9.1 within (9.4) and (9.6), one has

T (p,m) = 1+ O(p=~%/?).
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Thus there exists an absolute constant C' such that

1<l mm) <2 (9.9)

p>C
In view of (9.5), therefore, it suffices to consider only the primes p with p < C. The primes p with p = 3
(mod 4) satisfying 7 < p < C may be dealt with via the Cauchy-Davenport Theorem (see [21, Lemma
2.14]). Thus it may be shown that the number of distinct residue classes modulo p represented by the

polynomial z} + x4 + 23 + x4, with (z;,p) =1 (1 < j < 4), is at least

1 _
p—l) —3} = min{p,2p — 5} = p.

min{p, 4(4p—

One therefore has, for each natural number m, the lower bound M, (p) > 1, whence
T (p,m) > plp—1)7° > 1. (9-10)
Next suppose that p is a prime number with p = 1 (mod 4). In this case we apply exponential

sums, noting that for each integer x with (z,p) = 1, the number of solutions of the congruence z* = y*
(mod p), with 1 <y < p — 1, is precisely 4. Thus, by orthogonality,

p—1 p
Y 1Sip ) = Z; [Si(p,a)l* = (p—1)*
a=1 a=
—4p(p—1) = (p—1)* = (3p+ D)(p— 1), (9.11)
Moreover, when (a,p) = 1, a trivial estimate yields
1Sk(p,a)l <p—1, (9.12)
and further, Lemma 3.2 provides the upper bound
15 (p, )] = |S4(p,a) — 1| < 35+ 1. (9.13)
We therefore deduce from (9.4), (9.6) and (9.11)-(9.13) that
p—1

T3 (pom) =1 < (p=1)7° Y |S5(p, a)* S} (p, a)|

a=1
p—1
<(p-17'Gyp+1)7>_[Si(p,a)
a=1
<(p-1)7°Bvp+1)°Bp+1).
A modest computation leads from here to the upper bound |1} (p,m) — 1| < 9/10 whenever p > 37,

whence, under the same conditions,
15 (p,m) > 1/10. (9.14)

It remains to consider the primes p = 2, 3,5, 13,17 and 29. Note first that when p { m, the congruence
class m is represented by the polynomial

b(x) = 21 + a5 + 25 + a3,
with (z;,p) =1 (1 <j <4), if and only if the congruence

x] + a5 + x5+ x5 =ma;  (mod p)
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is soluble with (x;,p) =1 (0 < j < 4). Thus we may apply an exponential sum argument, similar to that
described in the previous paragraph, to show that each non-zero residue class modulo p is represented
by ¢(x), with (z;,p) =1 (1 < j <4), provided only that

(p—1)°>Byp+1)°@Bp+1)(p—1).

In particular, therefore, each non-zero residue class modulo 29 is represented by ¢(x) in the desired
manner. Moreover, since 1, 7 and —9 are each biquadratic residues modulo 29, one finds that ¢(x)
represents the zero residue class modulo 29, with (z;,29) = 1 (1 < j < 4). Consequently, for every
natural number m one has M, (29) > 1, whence by (9.8) it follows that the lower bound (9.10) holds
also when p = 29.

Next, on noting that £1 and 44 are biquadratic residues modulo 17, one may verify directly that
every residue class modulo 17 is represented by ¢(x) with (z;,17) =1 (1 < j < 4). Consequently, for
every natural number m one has My, (17) > 1, whence (9.10) holds also for p = 17. Also, since 1, 3
and 9 are biquadratic residues modulo 13, one may verify directly that every non-zero residue class is
represented by ¢(x) with (x;,13) =1 (1 < j < 4). Thus, when p = 13 the congruence (9.7) is soluble
with (z;,13) =1 (1 < j < 5) for every natural number m, except possibly when m =1 (mod 13). It
follows that whenever m # 1 (mod 13) one has M, (13) > 1, whence (9.10) holds for p = 13.

Finally we consider the primes 2, 3 and 5. Recall the definition (4.26). Then when m € Mj one
may verify directly for p = 2, 3 and 5 that the congruence (9.7) is soluble with (z;,p) =1 (1 < j <5).
Thus one has My . (p) > 1 for p = 2, 3 and 5 whenever m € Mj, whence (9.10) holds for these primes
.

On combining the conclusions of the previous three paragraphs together with (9.10) and (9.14), we
conclude from (9.5) and (9.9) that &} (m) > 1 provided only that m # 1 (mod 13) and m € Mj,. This
completes the proof of the lemma.

Before proceeding with the main body of our argument, it is convenient to record a lower bound for
a counting function related to one employed in the proof of Theorem 6 in §2. When ¢t € N and a, b € Z,
denote by p(m;t;a,b) the number of representations of m in the form m = 22 + xy + y?, with z and
y prime numbers satisfying the condition that (x + y)/2 is prime, and with x = a (mod t) and y = b
(mod t). It is useful also to define the set C(¢;a,b) by

C(t;a,b) = {m €N : p(m;t;a,b) > 0}.

Lemma 9.3. Suppose that t € N and a,b € Z satisfy (ab(a + b),t) = 1. Then when x is sufficiently
large in terms of t, one has
Z 1>, z(logz)™".

1<m<zx
p(m;t;a,b)>0

Proof. Recall the notation of the proof of Theorem 6 in §2, and suppose that ¢, a and b satisfy the
hypotheses of the statement of the lemma. Write p*(m) for p(m;t;a,b). Then on noting (2.8), one
plainly has

Z p*(m)? < Z p(m)? < R(zY/?) <« zlog . (9.15)

1<m<x 1<m<x

But, as a modest elaboration of the lower bound (2.7) evidently within the compass of the Hardy-
Littlewood method,

Yoopm) > > > 1> a(logz). (9.16)

1<m<zx h prime  pi,p2 primes
1§h§%$1/2 p1=a (mod t)
p2=b (mod t)

p1+p2=2h

Then on combining Cauchy’s inequality with (9.15) and (9.16), one arrives at the conclusion

Y oz (X sm) (X sm?) s wlegn)

1<m<zx 1<m<zx 1<m<zx
p*(m)>0
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This completes the proof of the lemma.

We note that in our application of Lemma 9.3 in the sequel we take ¢ = 13, and thus the implicit
constants arising in the lower bound recorded in the statement of Lemma 9.3 are of no importance in
our subsequent deliberations.

The conditions are now favourable for us to embark on the proof of Theorem 7. Let k be a fixed
natural number with & > 2, let M. be the set of integers defined in the statement of Theorem 7, and
let n be an integer with n € My N[N/2, N]. Write R}, (n) for the number of representations of n in the
form

4
n = 2m?—|—2m§ +Zp?+plg,
i=1

with mi,ms € C N [1,v/N/3], and with p; a prime number for 1 < j < 5. In view of the identity
(1.3) and the definition of the set C, it follows that whenever R} (n) > 0, the integer n possesses a
representation in the form (1.2). We put L = (log N)°, with o = 26#*7 and define 9 = 9M(L) and
m =m(L) as in the concluding paragraph of §3. When 9B C [0, 1), write

Ri(n;B) = /% g7 (@) [1(0)* ff (@)e(—na)da. (9.17)

Then by (9.1) we have
Ri(n) = Ry (n;[0,1)) = R (n; M) + Ry (n; m). (9.18)

We begin by estimating the contribution of the minor arcs m. According to [12, Theorem 10|, one
has
sup | fi ()| < Py(log N)~1%. (9.19)

acm

On considering the diophantine equation underlying the mean value estimate (2.4), moreover, one has

/ lg" (« a)*|da < N(log N)® (9.20)

(an estimate which may be compared to that recorded in Lemma 3.4). Thus, on combining (9.19) and
(9.20) to estimate R (n;m), we deduce from (9.17) that

Ri(nim) < sup (@) / 9" ()£ (@) lda
acm
< N VE(log N)=9, (9.21)

We estimate the major arc contribution R} (n;9t) by considering the tame major arc integral

= | fite) fif)e(=maydo, (9.22)
noting that by (9.1) one has
Ri(n; M) = Z Z T (n — 2m? — 2m3). (9.23)
1<mi1<V/N/31<m2<V/N/3
m1 E€C mo€C

When [ is a natural number, define the function V;*(«) by

$(q)~' S/ (g, a)v (o — a/q), when o € M(q,a) C M,

0, otherwise.

Ve = {
Then by Lemma 9.1, one has for each « € 9(q,a) C M the upper bound

Fi(@)* fi(@) = Vi (@)*Vi (@) < N ¥ exp(—ey/log N),
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for a suitable ¢ > 0. Since the measure of 9 is O((log N)?** N~1), we deduce from (9.22) that for each
natural number m,

1
T (m) — /0 vy (a)4Vk* (a)e(—ma)da < Nl/k(log N)_loo,

whence
Ti(m)= > Si(g,m)J;(¢,m; N,L) + O(N'*(log N) '), (9.24)
1<¢<L

where Sf (g, m) is defined as in (9.4), and

¢ 'LN"!

Ji(gym; N, L) = / 03 (8) 5 (B)e(—Bm)dB. (9.25)

_qflLNfl

Consider a fixed integer m with N/18 < m < N. On writing

Tim) = [ 03(8) v (e(—pm)as. (9.20
we deduce from (9.25) and Lemma 9.1 that whenever 1 < ¢ < L, one has
Tp(m) = Jilg.miN.L) < NS [T (1 Ng) kg
q-1LN-1
< NYk(q/L)Y/ (R (9.27)

Furthermore, in view of Lemma 9.1 and (9.26), a straightforward application of Fourier’s integral formula
demonstrates that J;(m) > N'/*(log N)~°. Thus it follows from (9.25) and Lemma 9.1 that

NYE(log N)™° < Ji(m) < NYF, (9.28)
We next handle the truncated singular series. Recall the definition (9.3). Then by (9.4) and Lemma

9.1 one has
Sim)— Y Silem) <D <LV
1<qg<L q>L

Moreover, similarly,

Y BRI m) < Y ¢TI <

1<¢<L 1<g<L

Consequently, on recalling (9.24), (9.27) and (9.28), we may conclude that
T (m) — Ji(m)&;(m) < NYF(log N)~100, (9.29)

We now recall (9.18), (9.21) and (9.23), and by means of (9.29) deduce that

Ri(n) = Up(n) + O(N'FTV/F(log N)~%9), (9.30)
where
Ui(n) = Z Z &5 (n —2m? — 2m3)Ji(n — 2m3 — 2m3). (9.31)
1<mi1<V/N/31<m2<V/N/3
m1E€C mo€C

On the one hand we have n € My N [N/2, N|, so that for each m; and msy in the latter summations,
one has
N/18 < n —2m? —2m3 < N.

Thus we deduce from (9.28) that whenever m; and mg occur in the summation of (9.31), one has

Ji(n —2m? — 2m2) > NY*(log N)~°. (9.32)
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On the other hand, on observing that whenever m € C, one has 2m? = 18 (mod 240), we find that
whenever n € My, and m1, mo € C, then it follows that n — 2m?2 — 2m3 € M. Then it follows from
Lemma 9.2 that whenever my,mq € C(13;1,1) and n # 11 (mod 13), then one has

Si(n —2m? —2m3) > 1, (9.33)

and, moreover, whenever my,mo € C(13;2,2) and n = 11 (mod 13), then again it follows from Lemma
9.2 that the lower bound (9.33) holds. On substituting (9.32) and (9.33) into (9.31), we conclude from
Lemma 9.3 that whenever n € My N[N/2,N] and n # 11 (mod 13), then

2
Uy (n) > > 1) NYF(logN) ™0 > N E(log N) 19, (9.34)

1<m<+vN/3
meC(13;1,1)

and similarly, whenever n € My N[N/2,N] and n =11 (mod 13), then

2
Uy (n) > > 1) NYF(log N) ™0 > NV F(log N) 19, (9.35)

1<m<+v/N/3
meC(13;2,2)

On collecting together (9.30), (9.34) and (9.35), we finally deduce that whenever n € M N[N/2, N],
one has
Ri(n) > N'H/E(log N)~19,

The conclusion of Theorem 7 follows immediately.
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