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1. Introduction

The continuing renaissance in the theory and application of the Hardy-Littlewood method has produced
significant advances in Waring’s problem, in particular with respect to our understanding of sums of
cubes, and sums of kth powers for larger k (see, for example, [16], [17], [18], [19], [22] and [24]). While
important progress has been made concerning sums of kth powers for smaller k, recent improvements
have been comparatively modest in scale, especially so far as fourth powers (biquadrates) are concerned.
The object of this paper is to make further progress on such additive problems involving biquadrates.
Recent developments elsewhere in Waring’s problem have made use of strong new bounds for mean
values of exponential sums over smooth numbers, and indeed these bounds are of utility in a plethora
of additive problems. In contrast to the latter methods, the ideas underlying the conclusions of this
paper make use only of an elementary polynomial identity, and are quite narrowly restricted in their
application to additive problems involving several biquadrates. Nonetheless, despite the simplicity of our
methods, we are able to tackle a number of problems which presently appear wholly beyond the reach
of the more sophisticated machinery depending on the use of smooth numbers. The ideas presented
below should therefore provide a useful addition to the arsenal of practitioners of the circle method.

The simplest consequence of our methods, which we deduce in §2, concerns the density of the set of
integers represented as the sum of 5 biquadrates.

Theorem 1. Let N(X) denote the number of natural numbers up to X that can be written as the sum
of 5 biquadrates. Then for each ε > 0 one has

N(X)� X(logX)−1−ε.

The conclusion of Theorem 1 comes tantalisingly close to establishing that sums of 5 biquadrates
have positive density. While it is conjectured that sums of 4 biquadrates have positive density, the best
result along these lines available hitherto is that sums of 6 biquadrates have this property, such following
directly from Vaughan [18, §§4 and 5]. Meanwhile, the lower bound N(X)� X1−δ, with δ = 0.0582 . . . ,
follows from [18, Theorem 4.3], and would appear to be the best such bound easily available from the
literature. We note, however, that slightly stronger bounds would follow, with sufficient effort, via the
techniques of [20], [22] and [25].

As experts will instantly recognise, our high level of control over sums of 5 biquadrates, transparent
from the conclusion of Theorem 1, leads to correspondingly powerful consequences for additive prob-
lems involving sums of 10 biquadrates, with cognate conclusions for problems involving 5 biquadrates.
Following some preliminary work on the associated exponential sums in §3, we investigate the latter
topics in §§4, 5 and 6. We begin, in §4, by considering sums of 10 biquadrates and a kth power.

Theorem 2. Let k be a fixed natural number.
(i) When 4 - k, every sufficiently large integer can be written as the sum of 10 biquadrates and a kth

power;
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(ii) When 4 | k, every sufficiently large integer n satisfying n ≡ r (mod 16) with 1 ≤ r ≤ 9 can be written
as the sum of 10 biquadrates and a kth power.

We note that when k = 3, the conclusion of part (i) of Theorem 2 is superseded by part (a)(i) of
Theorem 5 below, and when k ≤ 2 this conclusion is weaker than results attainable easily through
existing methods. For comparison, when k ≥ 5 and 4 - k, the best methods available hitherto appear
incapable even of demonstrating that all large integers are the sum of 11 biquadrates and a kth power.
Of course, under the latter hypothesis on k, it is immediate from Vaughan [18, Theorem 1.2] that all
large integers are the sum of 12 biquadrates and a kth power. When 4|k the problem of representing
integers in the proposed manner is complicated by the local solubility condition arising from the prime
2, and a little thought reveals that when n ≡ r (mod 16), with 12 ≤ r ≤ 15, then n cannot be written
as the sum of 10 biquadrates and a kth power. Further, when n ≡ 0 (mod 16), it is relatively simple to
find infinite families of integers, all divisible by 16, none of which can be written in the latter shape. The
conclusion of Theorem 2(ii) therefore leaves open the question as to whether or not large integers in the
residue classes 10 and 11 modulo 16 are represented in the proposed manner. While current philosophy
would lead one to conjecture that such integers are indeed represented in this way, our methods contain
an unfortunate artefact which in general entirely precludes their application to these latter congruence
classes.

The situation in Theorem 2 of particular interest is that with k = 4, which is tantamount to Waring’s
problem for biquadrates. In §5, by appealing to methods of Vaughan [18], we are able to recover the
congruence class 10 modulo 16 from the gap described in the previous paragraph. The remaining
congruence class 11 modulo 16 is, unfortunately, entirely beyond the grasp of our method.

Theorem 3. Every sufficiently large integer n satisfying n ≡ r (mod 16) with 1 ≤ r ≤ 10 can be
written as the sum of 11 biquadrates.

We recall that Davenport [6] has shown that whenever R ≥ 14, all large integers n with n ≡ r
(mod 16) and 1 ≤ r ≤ R are the sum of R integral biquadrates, a conclusion successively improved on
by Vaughan [17], [18], to the extent that the condition R ≥ 12 is now known to be permissible. As is
apparent, Theorem 3 narrowly misses showing that the latter condition can be weakened to R ≥ 11.

As an easy consequence of the argument used to establish Theorem 2, we are able in §6 to establish
related results concerning sums of 5 biquadrates and a kth power.

Theorem 4. Let k be a fixed natural number.
(i) When k is odd, almost all natural numbers can be written as the sum of 5 biquadrates and a kth

power;

(ii) When 2|k but 4 - k, almost all natural numbers n satisfying n ≡ r (mod 16) or n ≡ 8 + r (mod 16),
with 1 ≤ r ≤ 5, can be written as the sum of 5 biquadrates and a kth power;

(iii) When 4|k, almost all natural numbers n satisfying n ≡ r (mod 16) with 1 ≤ r ≤ 5 can be written as
the sum of 5 biquadrates and a kth power.

Once again, in the statement of Theorem 4, the congruence classes 6 and 14 modulo 16 in part (ii),
and 6 modulo 16 in part (iii), are excluded from admissibility purely as an artefact of our method, and
it is to be expected that the theorem should remain valid with their inclusion.

The scope for application of our methods to mixed additive problems involving biquadrates is great,
and for the purposes of illustration we confine ourselves here to sums of cubes and biquadrates. In §§7
and 8 we establish the conclusions contained in the following theorem.

Theorem 5.
(a) Every sufficiently large integer is represented in each of the following forms:
(i) as a sum of a cube and 9 biquadrates;

(ii) as a sum of 2 cubes and 8 biquadrates;
(iii) as a sum of 3 cubes and 6 biquadrates.

(b) Almost all natural numbers can be written as the sum of a cube and 4 biquadrates.

Each of these conclusions is new, and apparently unattainable through existing methods. Meanwhile
similar conclusions for 4 cubes and 5 biquadrates, 5 cubes and 3 biquadrates, and 6 cubes and 2
biquadrates, respectively, are attainable through existing technology (see, in particular, Brüdern [2]).

Before briefly describing the ideas underlying our method, we tarry a little longer to discuss appli-
cations of a more exotic flavour. First we remark on applications to the Waring-Goldbach problem
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for biquadrates. In §2 we make use of well-known lower bounds for the number of primes in 3-term
arithmetic progressions to establish a lower bound similar to that provided in Theorem 1.

Theorem 6. Let N1(X) denote the number of natural numbers n up to X that can be written in the
form

n = p4
1 + p4

2 + p4
3 + p4

4 + (2p5)4, (1.1)

with the pj prime numbers for 1 ≤ j ≤ 5. Then for each ε > 0 one has

N1(X)� X(logX)−18−ε.

Our analogue of Theorem 2 for prime numbers, which we establish in §9, involves a number of
congruence conditions which, as is the case for Theorem 2 itself, are presumably not all necessary (we
note, however, that if the primes used in the representation all exceed 5, then the congruence conditions
are indeed necessary).

Theorem 7. Let k be a fixed natural number with k ≥ 2. Denote by Mk the set of integers defined by

Mk =


{n ∈ N : (n, 10) = 1 and n 6≡ 1 (mod 3)}, when k is odd,

{n ∈ N : n ≡ 41 or 89 (mod 120)}, when 2|k but 4 - k,
{n ∈ N : n ≡ 41 (mod 240)}, when 4|k.

Then every sufficiently large integer n ∈Mk can be written in the form

n =

8∑
j=1

p4
j + (2p9)4 + (2p10)4 + pk11, (1.2)

with pj prime for 1 ≤ j ≤ 11.

Theorem 7 provides, in particular, an analogue of the Waring-Goldbach problem for biquadrates
with 11 almost-prime summands. We note that when k = 2 we can reduce the number of biquadrates
used in the representation (1.2) to 8.

The proofs of Theorems 1 to 7 are all based on the elementary polynomial identity

x4 + y4 + (x+ y)4 = 2(x2 + xy + y2)2, (1.3)

which Dickson [9] attributes to F. Proth (see footnote 227 in Chapter XXII). The identity (1.3) permits
us to specialise 3 biquadrates in such a way that their sum may be treated as a square. While it
is true that the latter is in fact the square of the binary quadratic form x2 + xy + y2, the values
assumed by this quadratic form are rather dense amongst the natural numbers, and thus we are able
to bring into play the powerful apparatus from the Hardy-Littlewood method designed for handling
mixed problems involving squares, biquadrates and so on (see the end of §2 for more general comments
on the application of (1.3) in such a setting). As is evident, regrettably, the specialisation implicit
in (1.3) constrains the sum of three biquadrates therein to be divisible by 2. Since the sum of three
unconstrained biquadrates can occupy the residue classes 0, 1, 2 or 3 modulo 16, it is apparent that
the use of (1.3) will necessarily impose additional congruence constraints within our applications, and
indeed it is this observation which accounts for the “loss” of admissible residue classes in Theorems 2, 3
and 4. A second unfortunate consequence of our use of the specialisation implicit in (1.3) concerns the
treatment of the major arcs in our applications of the Hardy-Littlewood method. Since, in essence, we
are replacing 3 variables by one, the total number of variables available to us is significantly reduced. In
particular, when it comes to bounding the exceptional sets arising in Theorems 4 and 5, we are forced
to tackle the convergence of the singular series, and related auxiliary sums, for quaternary and ternary
problems, respectively, the technical complexity of which is all too familiar to experts in this area. Such
difficulties in large part account for the length of this memoir.

By a fortunate coincidence, the structure of the identity (1.3) provides for applications of more
general type. Let f(t) be a quartic polynomial of the shape f(t) = at4 + bt2 + c, and let g(s) denote
the quadratic polynomial g(s) = 2as2 + 2bs+ 3c. Then one has the identity

f(x) + f(y) + f(x+ y) = g(x2 + xy + y2),

and thus with little difficulty one is able to adapt the methods of §§2 to 9 to handle additive problems
involving polynomials of the shape f(t). Of course, the difficulties associated with the congruence
conditions inherent in such problems will differ from those involving pure biquadrates, sometimes to
our advantage. For the purposes of illustration, we record without proof the following consequence of
this circle of ideas.
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Theorem 8. Every sufficiently large integer n can be written in the form

n = (x4
1 − 2x2

1) + (x4
2 − 2x2

2) + · · ·+ (x4
11 − 2x2

11),

with xi ∈ N (1 ≤ i ≤ 11).

Since for a fixed h the polynomial (h + x)5 + (h − x)5 takes the special quartic shape discussed in
the previous paragraph, the astute reader will anticipate the possibility of applying our ideas even to
sums of fifth powers. We defer discussion of this prospect to a future memoir (see [13]), the applications
being of a somewhat technical nature.

We finish by remarking that the methods of this paper are relevant to the study of g(k) when
k = 4, 5, where here, as usual, the function g(k) denotes the least integer s such that all positive
integers are the sum of s kth powers of non-negative integers. Formidable arguments of J.-R. Chen [5]
and Balasubramanian, Deshouillers and Dress (see, in particular, [1] and [8]) have shown, respectively,
that g(5) = 37 and g(4) = 19. The methods described herein allow alternative proofs to be provided
for the latter conclusions, and indeed it is now possible to provide a significantly simpler proof that
g(4) = 19. Moreover, when s < g(k), one is also able to study the set of exceptional integers, with no
representation as the sum of s kth powers of non-negative integers. This is a topic to which we intend
to return elsewhere.

Throughout, the letter k denotes a fixed positive integer. We adopt the convention that whenever
the letter ε appears in a statement, either explicitly or implicitly, then we assert that the statement
holds for every sufficiently small positive number ε. The “value” of ε may consequently change from
statement to statement. The implicit constants in Vinogradov’s notation � and �, and in Landau’s
notation, will depend at most on k and ε, unless stated otherwise. When x is a real number, we write
[x] for the greatest integer not exceeding x, and when n is an integer and p is a prime number we write
pr‖n when pr|n but pr+1 - n. We write d(n) for the number of divisors of the integer n, and write also
ω(n) for the number of distinct prime divisors of n. Finally, we adopt the convention throughout that
any variable denoted by the letter p is implicitly assumed to be a prime number.

2. Sums of five biquadrates

We begin by exploring the consequences of the identity (1.3) for sums of five biquadrates, exploiting
for this purpose well-known mean value estimates concerning two squares and four biquadrates (see, for
example, Exercise 6 of [21, §2.8]).

The proof of Theorem 1. Let X be a large real number. Denote by B the set of integers of the form
x2 + xy + y2, with x, y ∈ Z. Also, when n is a natural number, let r(n) denote the number of
representations of n in the form

n = 2m2 + u4 + v4, (2.1)

with m ∈ B and u, v ∈ N. Then in view of (1.3), whenever r(n) > 0, one has that n is the sum of 5
biquadrates, and thus, on recalling the notation of the statement of Theorem 1,

N(X) ≥
∑

1≤n≤X
r(n)>0

1. (2.2)

We next observe that when Y is large one has

card (B ∩ [1, Y ])� Y (log Y )−1/2

(it is standard and well-known that an asymptotic formula holds; for rather general results of this type
see, for example, [14]). Thus∑

1≤n≤X

r(n)�
∑

1≤u,v≤ 1
2X

1/4

card
(
B ∩ [1, 1

2X
1/2]
)
� X(logX)−1/2. (2.3)

Moreover, the argument of the proof of Théorème 2′(i) of [15] (see §2, and in particular the estimation
of W on p.235) provides the remarkably powerful estimate∑

1≤n≤X

r(n)2 � X exp
(

(2 + ε)
√

(log logX)(log log logX)
)
. (2.4)
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We may therefore apply Cauchy’s inequality in standard fashion to conclude from (2.3) and (2.4) that∑
1≤n≤X
r(n)>0

1 ≥
( ∑

1≤n≤X

r(n)
)2( ∑

1≤n≤X

r(n)2
)−1

� X(logX)−1−ε,

and thus the theorem follows immediately from (2.2).

In order to establish Theorem 6 we augment the argument of the proof of Theorem 1 with a lower
bound for the number of 3-term arithmetic progressions with prime entries lying in a fixed interval.
Before embarking on the proof we first record some notation. When m is a natural number, denote by
ρ(m) the number of representations of m in the form m = x2 + xy + y2, with x, y and 1

2 (x + y) all
prime numbers. Define the set of integers C by

C = {m ∈ N : ρ(m) > 0}. (2.5)

The proof of Theorem 6. Let X be a large real number. When n is a natural number, let r(n) on this
occasion denote the number of representations of n in the form (2.1) with m ∈ C and with u, v prime
numbers. Then, again in view of (1.3), whenever r(n) > 0 one has that n is represented in the form
(1.1), and thus, on recalling the notation of the statement of Theorem 6,

N1(X) ≥
∑

1≤n≤X
r(n)>0

1. (2.6)

We first provide a lower bound for the cardinality of the set C ∩ [1, X] for later use. The theory of the
binary Goldbach problem (see [10], or [21, Chapter 3]) demonstrates that for each fixed A > 0, there
is a fixed B > 0 such that for all large numbers x, all but at most x(log x)−A of the integers h with
1
2x ≤ h ≤ x have at least Bx(log x)−2 representations in the form 2h = p1 + p2, with pi (i = 1, 2) prime
numbers. Consequently, for each large number x one has∑

1≤m≤x

ρ(m) ≥
∑

h prime

1≤h≤ 1
2x

1/2

∑
p1,p2 primes
p1+p2=2h

1� x(log x)−3. (2.7)

On the other hand, on writing R(P ) for the number of solutions of the diophantine equation

x2
1 + x1y1 + y2

1 = x2
2 + x2y2 + y2

2 ,

with 1 ≤ xi, yi ≤ P (i = 1, 2), one has ∑
1≤m≤x

ρ(m)2 ≤ R(x1/2). (2.8)

As an easy exercise one may establish the upper bound R(P ) � P 2 log(2P ), and hence on combining
Cauchy’s inequality with (2.7) and (2.8) one obtains∑

1≤m≤x
ρ(m)>0

1 ≥
( ∑

1≤m≤x

ρ(m)
)2( ∑

1≤m≤x

ρ(m)2
)−1

� x(log x)−7.

Thus, on recalling the definition of r(n), one has∑
1≤n≤X

r(n) ≥
∑

u,v primes

1≤u,v≤ 1
2X

1/4

card
(
C ∩ [1, 1

2X
1/2]
)
� X(logX)−9.

Consequently, since the upper bound (2.4) remains valid with the more restrictive definition of r(n) hold-
ing here, the conclusion of Theorem 6 follows from (2.6) through an application of Cauchy’s inequality
paralleling that concluding the proof of Theorem 1.
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The key ideas in the proof of Theorems 1 and 6 are susceptible to generalisation, as we now illustrate.
When t is a natural number, let w(t) denote a non-negative weight satisfying the condition that for
each large number x one has

0 <
∑

1≤t≤x

w(t)� xε
∑

1≤t≤x/2

w(t), (2.9)

and for each ε > 0, ( ∑
1≤t≤x

w(t)
)2

� x1/2−ε
∑

1≤t≤x

w(t)2. (2.10)

Let N∗(x;w) denote the number of natural numbers up to x which can be written as the sum of 3
biquadrates and an integer t with w(t) > 0. Then the argument used to establish Theorem 1 is easily
adapted to establish the lower bound N∗(x;w) � x1−ε. Seen from this perspective, a slightly weaker
version of Theorem 1 is immediate on taking w(t) to be the number of ways of writing t as the sum
of two biquadrates. Other choices for w(t) satisfying (2.9) and (2.10) may be lifted from the stock of
examples familiar to additive number theorists. For example, one may take w(t) to be the number of
representations of t as the sum of a cube and a sixth power, or indeed the number of representations of
t as the sum of a biquadrate, an eighth power, ..., a 2l−1th power, and two 2lth powers, for any fixed
l with l ≥ 3. There will be associated conclusions concerning the representation of integers as sums of
6 biquadrates, two integers t1 and t2 with w(ti) > 0 (i = 1, 2) and a kth power, for example, although
we stress that unwanted congruence conditions may be generated through the artificial nature of our
construction.

3. Notation and Preliminaries

In advance of our various applications of the Hardy-Littlewood method in the remainder of this
paper, we first record some notation, and also establish some auxiliary estimates associated with the
exponential sums arising from an identity equivalent to (1.3), namely

(x+ y)4 + (x− y)4 + (2y)4 = 2(x2 + 3y2)2. (3.1)

Let N denote a sufficiently large positive integer. Further, when k is a positive integer, write

Pk = N
1
k . (3.2)

We will frequently abbreviate P4 simply to P . We write e(z) for e2πiz, and introduce the exponential
sums

fk(α) =
∑

1≤x≤Pk

e(αxk) and g(α) =
∑

P/4≤x,y≤P
x 6=y

e(2(x2 + 3y2)2α). (3.3)

We approximate the latter sums on the major arcs by means of the generating functions

Sk(q, a) =

q∑
r=1

e(ark/q), S(q, a) =

q∑
r=1

q∑
s=1

e(2a(r2 + 3s2)2/q), (3.4)

and

vk(β) =

∫ Pk

0

e(βtk)dt, v(β) =

∫ P

P/4

∫ P

P/4

e(2(t2 + 3u2)2β)dtdu. (3.5)

Lemma 3.1. Suppose that a ∈ Z, q ∈ N and α ∈ R satisfy (a, q) = 1 and α = β+ a/q. Then whenever
k ≥ 2 one has

Sk(q, a)� q1−1/k, vk(β)� Pk(1 +N |β|)−1/k,

and for each ε > 0,
fk(α)− q−1Sk(q, a)vk(β)� q1/2+ε(1 +N |β|)1/2.

Proof. For the proofs of these assertions, see, respectively, Theorems 4.2, 7.3 and 4.1 of [21].

It is convenient to record an estimate for Sk(q, a) sharper than that provided by Lemma 3.1 for use
in computations concerning the singular series.
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Lemma 3.2. Suppose that p is a prime number with p > k, and that a is an integer with (p, a) = 1.
Then one has

Sk(p, a) ≤ (k − 1)p1/2, Sk(ph, a) = ph−1 (2 ≤ h ≤ k),

and
Sk(ph, a) = pk−1Sk(ph−k, a) (h > k).

Proof. These estimates are immediate from Lemmata 4.3 and 4.4 of [21].

We next investigate approximations to the exponential sum g(α).

Lemma 3.3. Suppose that a ∈ Z, q ∈ N and α ∈ R satisfy (a, q) = 1 and α = β + a/q. Then

S(q, a)� q3/2d(q), v(β)� P 2(1 +N |β|)−1, (3.6)

where d(q) denotes the number of divisors of q, and

g(α)− q−2S(q, a)v(β)� qP (1 +N |β|). (3.7)

Proof. We begin by bounding S(q, a) when (a, q) = 1, noting simply that by (3.4),

S(q, a) = q−1

q∑
n=1

e(2an2/q)

q∑
l=1

q∑
r=1

q∑
s=1

e(l(r2 + 3s2 − n)/q)

= q−1

q∑
l=1

T (q, 2a,−l)T (q, l, 0)T (q, 3l, 0), (3.8)

where we write

T (q, c, d) =

q∑
y=1

e((cy2 + dy)/q).

But for each pair of integers, c and d, one has

|T (q, c, d)|2 =

q∑
x=1

q∑
y=1

e
(
(c((x+ y)2 − x2) + d((x+ y)− x))/q

)
=

q∑
y=1

e((cy2 + dy)/q)

q∑
x=1

e(2cxy/q)

= q

q∑
y=1
q|2cy

e((cy2 + dy)/q) ≤ q(q, 2c).

Consequently, on recalling that (a, q) = 1, it follows from (3.8) that

S(q, a)� q1/2

q∑
l=1

(q, l) ≤ q3/2d(q),

and this establishes the first estimate of (3.6).
In order to estimate v(β) we make use of the auxiliary estimate∫ A

B

ξe(γξ4)dξ � min
{
A2, A−2|γ|−1

}
, (3.9)

valid for A > B � A > 0 and γ ∈ R. In order to establish this bound, we note first that the left
hand side of (3.9) is O(A2), by a trivial estimate. Moreover the change of variable v = ξ4, followed
by a partial integration, shows that the integral on the left hand side of (3.9) is O(A−2|γ|−1). Having
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established (3.9), we next observe that by a change of variables in (3.5), it suffices to establish the
estimate ∫ 1

1/4

∫ 1

1/4

e(2(ξ2 + 3η2)2β)dξdη � min{1, |β|−1}. (3.10)

We dissect the square
[

1
4 , 1
]2

into the triangular regions

B1 = {(ξ, η) ∈
[

1
4 , 1
]2

: ξ ≤ η} and B2 = {(ξ, η) ∈
[

1
4 , 1
]2

: ξ > η}.

By the change of variable ξ = ηω, we obtain

∣∣∣∫∫
B1

e(2(ξ2 + 3η2)2β)dξdη
∣∣∣= ∣∣∣∫ 1

1/4

∫ 1

(4η)−1

ηe(2(ω2 + 3)2η4β)dωdη
∣∣∣,

whence, by interchanging the order of integration and making use of (3.9), we find that

∣∣∣∫∫
B1

e(2(ξ2 + 3η2)2β)dξdη
∣∣∣ =

∣∣∣∫ 1

1/4

∫ 1

(4ω)−1

ηe(2(ω2 + 3)2η4β)dηdω
∣∣∣

�
∫ 1

0

min
{

1, (ω2 + 3)−2|β|−1
}
dω. (3.11)

Moreover an easy estimate for the final integral in (3.11) reveals that it is

O
(

min{1, |β|−1}
)
.

The contribution from the region B2 may be bounded similarly, on interchanging the roles of ξ and η,
and thus (3.10) follows on combining the latter estimates.

Finally, we establish the approximation (3.7). We may suppose that q ≤ P , for otherwise (3.7) is
trivial. Write φ(r, s) = 2(r2 + 3s2)2, and observe that

g(α) =

q∑
r=1

q∑
s=1

e(aφ(r, s)/q)U(r, s) +O(P ), (3.12)

where

U(r, s) =
∑

P/4≤x≤P
x≡r (mod q)

∑
P/4≤y≤P
y≡s (mod q)

e(φ(x, y)β).

But a standard application of the mean value theorem yields

U(r, s) =

∫ u1

−u0

∫ t1

−t0
e (φ(qt+ r, qu+ s)β) dtdu+O(q−1P + q−1P 5|β|),

where

t0 =
[(

1
4P − r

)
/q
]
− 1

2 , t1 = [(P − r)/q] + 1
2 ,

u0 =
[(

1
4P − s

)
/q
]
− 1

2 , u1 = [(P − s)/q] + 1
2 .

Consequently, a change of variables followed by an adjustment in the range of integration yields the
estimate

U(r, s)− q−2v(β)� q−1P + q−1P 5|β|. (3.13)

The desired conclusion (3.7) therefore follows on substituting (3.13) into (3.12), and recalling (3.4).

It will be convenient in what follows to refer to a mean value estimate contained, in all essentials, in
the upper bound (2.4).
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Lemma 3.4. For each ε > 0 one has∫ 1

0

∣∣g(α)2f4(α)4
∣∣ dα� N1+ε. (3.14)

Proof. On recalling (3.3) and considering the underlying diophantine equation, one finds that the inte-
gral on the left hand side of (3.14) is bounded above by the number of solutions of the equation

2(x2
1 + 3y2

1)2 + u4
1 + u4

2 = 2(x2
2 + 3y2

2)2 + u4
3 + u4

4, (3.15)

with 1 ≤ xi, yi ≤ P (i = 1, 2) and 1 ≤ uj ≤ P (1 ≤ j ≤ 4). By means of elementary divisor
function estimates, the number of solutions of (3.15) with u4

1 + u4
2 = u4

3 + u4
4 is O(P 4+ε). Meanwhile,

when u4
1 + u4

2 6= u4
3 + u4

4 one finds that both of the integers (x2
1 + 3y2

1) ± (x2
2 + 3y2

2) are divisors of
(u4

1 + u4
2) − (u4

3 + u4
4), whence for each fixed choice of the ui there are O(Nε) possible choices for

x2
i + 3y2

i (i = 1, 2), and hence O(N2ε) possible choices for xi and yi (i = 1, 2). Since there are O(P 4)
available possibilities for the ui (1 ≤ i ≤ 4), we conclude that the total number of solutions of (3.15) is
O(P 4+ε), and the lemma follows immediately.

We also record a second even simpler mean value estimate.

Lemma 3.5. For each ε > 0 one has ∫ 1

0

|g(α)|4dα� N1+ε. (3.16)

Proof. On considering the underlying diophantine equations, it follows from (3.3) that the integral on
the left hand side of (3.16) is bounded above by the number of solutions of the diophantine system

m2
1 −m2

2 = m2
3 −m2

4, (3.17)

mi = x2
i + 3y2

i (1 ≤ i ≤ 4), (3.18)

with 1 ≤ xi, yi ≤ P (1 ≤ i ≤ 4). Suppose first that xi, yi (i = 3, 4) satisfy the condition that m3 6= m4.
Then by applying an elementary estimate for the divisor function, it follows from (3.17) that the number
of possible choices for m1 and m2 is O(P ε), whence by (3.18) there are O(P ε) possible choices for xj , yj
(j = 1, 2). Thus the total number of solutions of this type is O(P 4+ε). When xi, yi (i = 3, 4) satisfy
the condition that m3 = m4, moreover, one has

x2
1 + 3y2

1 = x2
2 + 3y2

2 and x2
3 + 3y2

3 = x2
4 + 3y2

4 ,

and again elementary divisor function estimates show that the number of solutions counted here is
O(P 4+ε). Thus we conclude that the total number of solutions is O(N1+ε), and the proof of the lemma
is complete.

In advance of our imminent applications of the Hardy-Littlewood method in the forthcoming sections,
it is convenient to record notation for a generic dissection. Let Q be a large real number. When a ∈ Z
and q ∈ N, write

MQ(q, a) = {α ∈ [0, 1) : |qα− a| ≤ QN−1},

and take M(Q) to be the union of the intervals MQ(q, a) with 0 ≤ a ≤ q ≤ Q and (a, q) = 1.

Note that when Q < 1
2N

1/2, the intervals occurring in the latter union are disjoint. Finally, write
m(Q) = [0, 1) \M(Q).

4. Sums of 10 biquadrates and a kth power

Our preparations complete, we now apply the Hardy-Littlewood method to establish Theorem 2.
Although many of the details will be considered by experts to be routine, we preserve some measure
of completeness in our exposition for the edification of those less expert in the application of the circle
method.
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The proof of Theorem 2. Let k be a fixed natural number with k ≥ 2, and let n be a large positive
integer. Write Rk(n) for the number of representations of n in the form

n =
2∑
i=1

(
(xi + yi)

4 + (xi − yi)4 + (2yi)
4
)

+
4∑
j=1

z4
j + wk, (4.1)

with xi, yi natural numbers satisfying xi 6= yi (i = 1, 2), and with zj (1 ≤ j ≤ 4) and w natural numbers.
We aim to establish that Rk(n) > 0, whence, as is evident from (4.1), the integer n is represented as
the sum of 10 biquadrates and a kth power.

It is convenient, for later use, to take N to be the large real parameter introduced in the previous
section, and to consider an integer n with N/2 < n ≤ N . When B ⊆ [0, 1), define

Rk(n;B) =

∫
B

g(α)2f4(α)4fk(α)e(−nα)dα. (4.2)

Write X = P8k, M = M(X) and m = m(X). Then on recalling (3.1)-(3.3), it follows from orthogonality
that

Rk(n) ≥ Rk(n; [0, 1)) = Rk(n;M) +Rk(n;m). (4.3)

The estimation of Rk(n;m) is routine. By Weyl’s inequality (see, for example, [21, Lemma 2.4]), one
has

sup
α∈m
|fk(α)| � P 1+ε

k X−21−k
� PkN

−2δ, (4.4)

where δ = (k2k+4)−1. In view of (4.2), therefore, we deduce from Lemma 3.4 that

Rk(n;m) ≤ sup
α∈m
|fk(α)|

∫ 1

0

∣∣g(α)2f4(α)4
∣∣ dα

� PkN
1+ε−2δ � N1+1/k−δ. (4.5)

In order to estimate Rk(n;M) we first introduce some additional notation. When l is a natural
number, Q is a large real number with Q < 1

2N
1/2, and α ∈ R, define Vl(α) = Vl(α;Q) by

Vl(α;Q) =

{
q−1Sl(q, a)vl(α− a/q), when α ∈MQ(q, a) ⊆M(Q),

0, otherwise.
(4.6)

Similarly, define W (α) = W (α;Q) by

W (α;Q) =

{
q−2S(q, a)v(α− a/q), when α ∈MQ(q, a) ⊆M(Q),

0, otherwise.
(4.7)

Then on combining trivial estimates for the relevant exponential sums together with the estimates
provided by Lemmata 3.1 and 3.3, one has for each α ∈M the upper bound

g(α)2f4(α)4fk(α)−W (α;X)2V4(α;X)4Vk(α;X)� X1/2+εP 8 +XP 7Pk.

But the measure of M is plainly O(X2N−1), so that by (4.2),

Rk(n;M)−
∫ 1

0

W (α;X)2V4(α;X)4Vk(α;X)e(−nα)dα

� N−1
(
X5/2+εP 8 +X3P 7Pk

)
� N1+1/k−δ. (4.8)

It follows from (4.3), (4.5) and (4.8) that

Rk(n; [0, 1))−
∑

1≤q≤X

Sk(q, n)J∗k (q, n;N,X)� N1+1/k−δ, (4.9)
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where

Sk(q, n) =

q∑
a=1

(a,q)=1

q−9S(q, a)2S4(q, a)4Sk(q, a)e(−na/q), (4.10)

and

J∗k (q, n;N,X) =

∫ q−1XN−1

−q−1XN−1

v(β)2v4(β)4vk(β)e(−nβ)dβ. (4.11)

Next write

Jk(n) =

∫ ∞
−∞

v(β)2v4(β)4vk(β)e(−βn)dβ, (4.12)

the absolute convergence of which is assured by means of Lemmata 3.1 and 3.3. By employing the latter
lemmata one finds from (4.11) and (4.12) that

J∗k (q, n;N,X)− Jk(n)� N2+1/k

∫ ∞
q−1XN−1

(1 +Nβ)
−3−1/k

dβ,

so that whenever 1 ≤ q ≤ X and 0 < θ ≤ 2 + 1/k one has

J∗k (q, n;N,X)− Jk(n)� N1+1/k(q/X)θ. (4.13)

Moreover, again by Lemmata 3.1 and 3.3,

Jk(n)� N2+1/k

∫ ∞
0

(1 +Nβ)
−3−1/k

dβ � N1+1/k. (4.14)

On recalling (4.10), we find from Lemmata 3.1 and 3.3 that one has

Sk(q, n)� qε−1−1/k. (4.15)

It therefore follows from (4.13) via yet another application of Lemmata 3.1 and 3.3 that

Jk(n)
∑

1≤q≤X

Sk(q, n)−
∑

1≤q≤X

Sk(q, n)J∗k (q, n;N,X)

� N1+1/k
∑

1≤q≤X

qε−1−1/k(q/X)θ,

whence, on taking θ = 1/(2k), we deduce that

Jk(n)
∑

1≤q≤X

Sk(q, n)−
∑

1≤q≤X

Sk(q, n)J∗k (q, n;N,X)� N1+1/k−δ. (4.16)

Finally, we write

Sk(n) =

∞∑
q=1

q−9

q∑
a=1

(a,q)=1

S(q, a)2S4(q, a)4Sk(q, a)e(−na/q).

On recalling (4.15), we find that

Sk(n)−
∑

1≤q≤X

Sk(q, n)�
∑
q>X

q−1−1/(2k) � X−1/(2k).

It therefore follows from (4.14) and (4.16) that

Sk(n)Jk(n)−
∑

1≤q≤X

Sk(q, n)J∗k (q, n;N,X)� N1+1/k−δ +N1+1/kX−1/(2k),
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whence by (4.9),

Rk(n; [0, 1))− Jk(n)Sk(n)� N1+1/k−δ. (4.17)

The estimation of the singular integral Jk(n) is standard. By a change of variables one deduces from
(4.12) that

Jk(n) = N1+1/k

∫ ∞
−∞

∫
B
e (β (Φ(γ)− n/N)) dγdβ,

where B = [0, 1]5 ×
[

1
4 , 1
]4

, and

Φ(γ) = γ4
1 + · · ·+ γ4

4 + γk5 + 2(γ2
6 + 3γ2

7)2 + 2(γ2
8 + 3γ2

9)2. (4.18)

Thus a straightforward application of Fourier’s integral formula confirms that

Jk(n)� N1+1/k. (4.19)

It remains to analyse the singular series Sk(n). It follows from the standard theory of exponential
sums (see, for example, the proofs of Lemmata 2.10 and 2.11 of [21]) that Sk(q, n) is a multiplicative
function of q. Moreover, by (4.15), the series

Sk(n) =

∞∑
q=1

Sk(q, n)

is absolutely convergent, and for each prime number p one has

∞∑
h=0

Sk(ph, n) = 1 +O(p−1−1/(2k)). (4.20)

The elementary theory of series of multiplicative functions consequently shows that

Sk(n) =
∏
p

Tk(p, n), (4.21)

where the product is over prime numbers, and

Tk(p, n) =

∞∑
h=0

Sk(ph, n). (4.22)

In order to handle the contribution of the small primes p in the product (4.21), we adapt the standard
treatment used in Waring’s problem, as described, for example, in [21, §2.6]. We observe first that by
the argument of the proof of [21, Lemma 2.12], one has for each H ≥ 1,

H∑
h=0

Sk(ph, n) = p−8HMk,n(pH), (4.23)

where Mk,n(q) denotes the number of solutions of the congruence

Φ(z) ≡ n (mod q),

with Φ(z) defined by (4.18), and with 1 ≤ zi ≤ q (1 ≤ i ≤ 9). It follows, in particular, that Tk(p, n) is
real and non-negative. By (4.20) and (4.21), moreover, there exists a positive absolute constant C with
the property that

1
2 ≤

∏
p≥C

Tk(p, n) ≤ 2. (4.24)

We aim to show, subject only to the condition that when 4|k one has n ≡ r (mod 16) with 1 ≤ r ≤ 9,
that for each prime p with p < C, one has

Mk,n(pH)� p8H , (4.25)
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with the implicit constant absolute. From the latter lower bound, by means of (4.21)-(4.24), it follows
that 1� Sk(n)� 1, whence by (4.3), (4.17) and (4.19) we may conclude that Rk(n)� N1+1/k. This
will complete the proof of Theorem 2.

Before advancing to establish the above claim (4.25) we pause to recall some of the standard theory
from [21, §2.6], in a form appropriate to the application at hand. When p is a prime number, define
γ = γ(p) by

γ(p) =

{
4, when p = 2,

1, otherwise.
(4.26)

Then whenever a is a 4th power residue modulo pγ , one has that a is a 4th power residue modulo pt

for every t. Moreover the number of 4th power residues modulo pγ is (p− 1)/(4, p− 1) when p 6= 2, and
is precisely 1 when p = 2.

Consider first a prime number p with p > 2. Since for each natural number k, the monomial zk

represents 0 and 1 modulo p, the Cauchy-Davenport Theorem (see, for example, [21, Lemma 2.14])
shows that the number of distinct residue classes modulo p represented by the polynomial

y4
1 + y4

2 + y4
3 + y4

4 + wk,

subject to (y1, p) = 1, is at least

min

{
p , 4

p− 1

(4, p− 1)
+ 1

}
= p.

Thus, for every integer n, when p > 2 there is a solution of the congruence

Φ(z) ≡ n (mod pγ) (4.27)

with (z1, p) = 1. When p = 2 we argue directly. Observe that the polynomial 2(x2 + 3y2)2 represents
the congruence classes 0 and 2 modulo 16. Also, when 4 - k, the set of values taken by the monomial
wk includes, at least, the residue classes 0, 1 and 9 modulo 16, and when 4|k the corresponding set
consists only of 0 and 1 modulo 16. Then a little thought reveals that Φ(z) represents every residue class
modulo 16 when 4 - k, and represents the residue class r modulo 16, for 1 ≤ r ≤ 9, when 4|k. Moreover,
one may take z1 to be odd in the latter representations. Thus, when p = 2 there is a solution of the
congruence (4.27) with z1 odd provided only that when 4|k one has n ≡ r (mod 16) with 1 ≤ r ≤ 9.

Given a solution, z, of the type described in the previous paragraph, and any natural number H, we
generate a solution x to the congruence

Φ(x) ≡ n (mod pH)

by choosing any integers xi with xi ≡ zi (mod pγ) for 2 ≤ i ≤ 9, and then solving the ensuing
congruence modulo pH for x1. This congruence assumes the shape x4

1 ≡ m (mod pH) with m a 4th
power residue modulo pγ , so is soluble by the above discussion. Since the number of such possible
choices for x is evidently at least p8(H−γ), we deduce that for each prime p one has

Mk,n(pH) ≥ p8(H−γ) � p8H ,

thus confirming (4.25). This completes the proof of Theorem 2.

5. Sums of 11 biquadrates

In order to establish Theorem 3 we must resort to the use of smooth numbers. Before describing
the proof of the latter theorem, it is useful to record some notation. When X and Y are positive real
numbers, denote by A(X,Y ) the set of Y -smooth numbers up to X, that is

A(X,Y ) = {n ∈ [1, X] ∩ Z : p|n and p prime implies that p ≤ Y }.

Write
h(α;P,R) =

∑
x∈A(P,R)

e(αx4).
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Then it follows from Theorem 4.3 of Vaughan [18], together with the remark at the end of [24, §3], that
when η is a sufficiently small positive number and R ≤ P η, then∫ 1

0

|f4(α)2h(α;P,R)8|dα� P 6+∆, (5.1)

with ∆ a certain positive number satisfying ∆ ≤ 0.233.

The proof of Theorem 3. Take N to be the large real parameter introduced in §3, and let η be a fixed
positive number, sufficiently small in the context of the estimate (5.1). Consider an integer n with
N/2 < n ≤ N , and let R(n) denote the number of representations of n in the form

n = (x+ y)4 + (x− y)4 + (2y)4 +
4∑
i=1

z4
i +

4∑
j=1

w4
j ,

with
1 ≤ zi ≤ P (1 ≤ i ≤ 4), wj ∈ A(P, P η) (1 ≤ j ≤ 4),

P/4 ≤ x, y ≤ P and x 6= y.

We aim to show that whenever n is a large positive integer satisfying n ≡ r (mod 16) with 1 ≤ r ≤
10, then R(n) > 0, whence n is represented as the sum of 11 biquadrates. The latter conclusion is
tantamount to Theorem 3.

Abbreviate h(α;P, P η) to h(α). Then by orthogonality one has

R(n) =

∫ 1

0

g(α)f4(α)4h(α)4e(−nα)dα. (5.2)

In order to estimate the integral in (5.2) we apply the Hardy-Littlewood method, dissecting the unit
interval into the sets

B1 = m(P/8), B2 = M(P/8) \M(Y ) and B3 = M(Y ),

where we write Y = (logP )1/4. Thus

R(n) = R1 +R2 +R3, (5.3)

where

Rj =

∫
Bj

g(α)f4(α)4h(α)4e(−nα)dα (j = 1, 2, 3). (5.4)

The contribution, R1, of the minor arcs to R(n) may be easily disposed of by appealing to Weyl’s
inequality (see, for example, [21, Lemma 2.4]). Thus, on applying Schwarz’s inequality in combination
with Lemma 3.4 and the inequality (5.1), and recalling that P = N1/4, we obtain

R1 ≤ sup
α∈B1

|f4(α)|
(∫ 1

0

|g(α)2f4(α)4|dα
)1/2(∫ 1

0

|f4(α)2h(α)8|dα
)1/2

� P 7/8+ε
(
N1+ε

)1/2 (
P 6+∆

)1/2 � N3/2−δ1 , (5.5)

where 4δ1 = 1
8 −

1
2∆− 3ε > 0.008.

We estimate R2 by applying Hölder’s inequality and making use of the trivial estimate |g(α)| =
O(P 2), thereby obtaining

R2 � P 2I
2/3
1 I

1/3
2 , (5.6)

where

I1 =

∫
B2

|f4(α)|6dα and I2 =

∫
M(P/8)

|h(α)|12dα. (5.7)
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It follows from the argument of the proof of [18, Lemma 5.1] that

I1 � P 2Y ε−1/4. (5.8)

Meanwhile, by considering the underlying diophantine equation one has

I2 ≤
∫ 1

0

|h(α)|12dα ≤
∫ 1

0

|f4(α)4h(α)8|dα,

so that on applying the Hardy-Littlewood method we obtain

I2 ≤ I3 + I4, (5.9)

where

I3 =

∫
M(P/8)

|f4(α)4h(α)8|dα and I4 =

∫
m(P/8)

|f4(α)4h(α)8|dα.

But by Weyl’s inequality (see [21, Lemma 2.4]) together with (5.1), we have

I4 ≤
(

sup
α∈m(P/8)

|f4(α)|
)2
∫ 1

0

|f4(α)2h(α)8|dα

�
(
P 7/8+ε

)2

P 6+∆ � P 8−δ2 , (5.10)

where δ2 = 1
4 −∆− 2ε > 0.016. Moreover, on recalling (5.7), it follows from Hölder’s inequality that

I3 ≤
(∫

M(P/8)

|f4(α)|12dα
)1/3

I
2/3
2 .

Then by (5.9) and (5.10), together with an application of [18, Lemma 5.1], we deduce that

I2 ≤ P 8−δ2 + (P 8)1/3I
2/3
2 ,

whence I2 � P 8. On recalling (5.6) and (5.8), therefore, we conclude that

R2 � P 2(P 2Y ε−1/4)2/3(P 8)1/3 � N3/2(logN)−1/25. (5.11)

It remains only to estimate R3. We begin with a little notation. Let ρ(x) denote Dickman’s function,
defined for real x by

ρ(x) = 0 when x ≤ 0,

ρ(x) = 1 when 0 < x ≤ 1,

ρ is continuous for x > 0,

ρ is differentiable for x > 1,

xρ′(x) = −ρ(x− 1) for x > 1.

Define

w(β) =

∫ P

Pη
ρ

(
log γ

η logP

)
e(βγ4)dγ,

and note that on following the argument sketched in the proof of [23, Lemma 8.6], one has

w(β)� P
(
1 + P 4|β|

)−1/4
. (5.12)

Suppose that a ∈ Z and q ∈ N satisfy (a, q) = 1, and write β = α − a/q. Then [23, Lemma 8.5] shows
that when q ≤ P η, one has

h(α)− q−1S4(q, a)w(β)� qP

logP

(
1 + P 4|β|

)
. (5.13)
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When Q is a large real number, and α ∈ R, define U(α) = U(α;Q) by

U(α;Q) =

{
q−1S4(q, a)w(α− a/q), when α ∈MQ(q, a) ⊆M(Q),

0, otherwise,

and define Vl(α;Q) and W (α;Q) as in (4.6) and (4.7). Then on combining trivial estimates for the
relevant exponential sums together with the estimates provided by Lemmata 3.1, 3.3 and (5.13), one
has for each α ∈ B3 the upper bound

g(α)f4(α)4h(α)4 −W (α;Y )V4(α;Y )4U(α;Y )4 � Y P

logP
P 9 + Y P 9

� Y N5/2(logN)−1.

But the measure of B3 is plainly O(Y 2N−1), so that by (5.4) one has

R3 −
∫ 1

0

W (α;Y )V4(α;Y )4U(α;Y )4e(−nα)dα

� Y 3N3/2(logN)−1 � N3/2(logN)−1/4. (5.14)

Then on making use of (5.3), (5.5), (5.11) and (5.14), together with the definitions of W , V4 and U , we
may conclude thus far that

R(n)−
∑

1≤q≤Y

S(q, n)J∗(q, n;N,Y )� N3/2(logN)−1/25, (5.15)

where

S(q, n) =

q∑
a=1

(a,q)=1

q−10S(q, a)S4(q, a)8e(−na/q),

and

J∗(q, n;N,Y ) =

∫ q−1Y N−1

−q−1Y N−1

v(β)v4(β)4w(β)4e(−nβ)dβ.

Next we write

J(n) =

∫ ∞
−∞

v(β)v4(β)4w(β)4e(−nβ)dβ, (5.16)

and

S(n) =
∞∑
q=1

q−10

q∑
a=1

(a,q)=1

S(q, a)S4(q, a)8e(−na/q). (5.17)

By applying Lemmata 3.1, 3.3 and (5.12) to (5.16) and (5.17), it follows easily that J(n)� N3/2 and
S(n) � 1. Further, by following the argument applied in the proof of Theorem 2 leading to (4.17),
mutatis mutandis, one arrives at the conclusion

J(n)S(n)−
∑

1≤q≤Y

S(q, n)J∗(q, n;N,Y )� N3/2Y −1/4,

whence by (5.15),

R(n)− J(n)S(n)� N3/2(logN)−1/25. (5.18)

The estimation of the singular integral is complicated by the presence of weights, specifically, the
implicit occurrence of the Dickman function. However, one may apply the argument of the proof of [26,
Lemma 9.10] to obtain the lower bound

J(n)� N3/2. (5.19)
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The singular series may be handled by the corresponding argument in the proof of Theorem 2. A little
thought reveals that in order to establish the lower bound

S(n)� 1, (5.20)

all that remains is to check that the congruence

2(x2 + 3y2)2 +
8∑
j=1

z4
j ≡ n (mod 16)

possesses a solution with z1 odd for those n satisfying n ≡ r (mod 16) for some r with 1 ≤ r ≤ 10. But
since 2(x2 + 3y2)2 takes the values 0 and 2 modulo 16, the latter is easily checked by hand. Collecting
together (5.18)-(5.20), we conclude that whenever n is a large integer with N/2 < n ≤ N , satisfying
n ≡ r (mod 16) for some r with 1 ≤ r ≤ 10, then one has R(n)� N3/2, and this completes the proof
of Theorem 3.

6. Sums of 5 biquadrates and a kth power

The proof of Theorem 4 follows from the methods of the proof of Theorem 2 via an application of
Bessel’s inequality. A somewhat serious difficulty concerns the convergence of the singular series, and
this issue forces us to modify the endgame of our argument in several important respects.

The proof of Theorem 4. Let k be a fixed natural number with k ≥ 2, and let n be a large positive
integer. Write R∗k(n) for the number of representations of n in the form

n = (x+ y)4 + (x− y)4 + (2y)4 + z4
1 + z4

2 + wk, (6.1)

with x, y natural numbers satisfying x 6= y, and with zj (j = 1, 2) and w natural numbers. We aim to
establish that when X is a large real number, then R∗k(n) > 0 for every n lying in a certain collection
of congruence classes, and satisfying 1 ≤ n ≤ X, with at most o(X) possible exceptions. From this
assertion, as is evident from (6.1), almost all integers n in the aforementioned congruence classes are
represented as the sum of 5 biquadrates and a kth power.

We take N to be the large real parameter introduced in §3, and consider an integer n with N/2 <
n ≤ N . When B ⊆ [0, 1), define

R∗k(n;B) =

∫
B

g(α)f4(α)2fk(α)e(−nα)dα. (6.2)

Write X = P8k, M = M(X) and m = m(X). Then on recalling (3.3), it follows from orthogonality that

R∗k(n) ≥ R∗k(n; [0, 1)) = R∗k(n;M) +R∗k(n;m). (6.3)

We estimate R∗k(n;m) in mean square by applying Bessel’s inequality, thereby obtaining∑
N/2<n≤N

|R∗k(n;m)|2 ≤
∫
m

|g(α)f4(α)2fk(α)|2dα.

Thus, on recalling (4.4), we deduce from Lemma 3.4 that

∑
N/2<n≤N

|R∗k(n;m)|2 ≤
(

sup
α∈m
|fk(α)|

)2
∫ 1

0

|g(α)2f4(α)4|dα

� (PkN
−2δ)2N1+ε � N1+2/k−δ, (6.4)

where δ = (k2k+4)−1.
We next treat R∗k(n;M). Recall the definitions (4.6) and (4.7). Then on combining trivial estimates

for the relevant exponential sums together with the estimates provided by Lemmata 3.1 and 3.3, one
finds that for each α ∈M,

g(α)f4(α)2fk(α)−W (α;X)V4(α;X)2Vk(α;X)� X1/2+εP 4 +XP 3Pk.
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But the measure of M is plainly O(X2N−1), so that

R∗k(n;M)−
∫ 1

0

W (α;X)V4(α;X)2Vk(α;X)e(−nα)dα

� N−1
(
X5/2+εP 4 +X3P 3Pk

)
� N1/k−δ.

We therefore deduce that

R∗k(n;M)−
∑

1≤q≤X

S∗k(q, n)J∗k (q, n;N,X)� N1/k−δ, (6.5)

where

S∗k(q, n) =

q∑
a=1

(a,q)=1

q−5S(q, a)S4(q, a)2Sk(q, a)e(−na/q), (6.6)

and

J∗k (q, n;N,X) =

∫ q−1XN−1

−q−1XN−1

v(β)v4(β)2vk(β)e(−nβ)dβ. (6.7)

Next write

J∗k (n) =

∫ ∞
−∞

v(β)v4(β)2vk(β)e(−nβ)dβ, (6.8)

the absolute convergence of which is assured by means of Lemmata 3.1 and 3.3. By employing the latter
estimates one finds from (6.7) that whenever 1 ≤ q ≤ X and 0 < θ ≤ 1

2 + 1
k , one has

J∗k (q, n;N,X)− J∗k (n)� N1+1/k

∫ ∞
q−1XN−1

(1 +Nβ)−
3
2−

1
k dβ � N1/k(q/X)θ.

Consequently, one has

J∗k (n)
∑

1≤q≤X

S∗k(q, n)−
∑

1≤q≤X

S∗k(q, n)J∗k (q, n;N,X)

� N1/k
∑

1≤q≤X

(q/X)θ|S∗k(q, n)|. (6.9)

Moreover, again by Lemmata 3.1 and 3.3,

J∗k (n)� N1/k. (6.10)

In order to analyse the right hand side of (6.9), we note that the standard theory of exponential
sums reveals that S∗k(q, n) is multiplicative (see, for example, the proofs of Lemmata 2.10 and 2.11 of
[21]). Thus

|S∗k(q, n)| =
∏
ph‖q

|S∗k(ph, n)|. (6.11)

Next we note that whenever (q, t) = 1, then by a change of variables one has S(q, a) = S(q, at4k),
and similarly S4(q, a) = S4(q, at4k) and Sk(q, a) = Sk(q, at4k). On substituting the latter into (6.6),
substituting a for occurrences of at4k, we deduce that S∗k(q, n) = S∗k(q, l4kn), where l satisfies lt ≡ 1
(mod q). Consequently, on summing over the values of l with (l, q) = 1, we deduce that

φ(q)S∗k(q, n) =

q∑
l=1

(l,q)=1

S∗k(q, l4kn)

= q−5

q∑
a=1

(a,q)=1

S(q, a)S4(q, a)2Sk(q, a)U(q,−an), (6.12)
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where we write

U(q, b) =

q∑
l=1

(l,q)=1

e(bl4k/q).

Plainly,

U(q, b) = (q, b)U

(
q

(q, b)
,

b

(q, b)

)
. (6.13)

Moreover, Lemma 1.2 of Hua [11] shows that whenever p is a prime number, h is a natural number,
and b is an integer with (b, p) = 1, then one has

U(ph, b)� ph/2.

Consequently, for each prime p and natural number h, it follows from (6.13) that whenever (a, p) = 1,
one has

U(ph,−an)� ph/2(ph, n)1/2. (6.14)

On combining (6.14) with the estimates provided by Lemmata 3.2 and 3.3, it follows from (6.12)
that, for each prime p and each natural number h, one has

S∗k(ph, n)� hp−1−h/2(ph, n)1/2, (6.15)

whence by the multiplicative property (6.11) of S∗k(q, n), we deduce that

S∗k(q, n)� q̃−1qε−1/2(q, n)1/2, (6.16)

where q̃ denotes the squarefree kernel of q, that is

q̃ =
∏
p|q

p.

On substituting (6.16) into (6.9), we conclude that

∑
N/2<n≤N

∣∣∣J∗k (n)
∑

1≤q≤X

S∗k(q, n)−
∑

1≤q≤X

S∗k(q, n)J∗k (q, n;N,X)
∣∣∣2� N2/kE(N,X), (6.17)

where
E(N,X) = X−2θ

∑
1≤n≤N

∑
1≤q1,q2≤X

(q̃1q̃2)−1(q1q2)θ+ε−1/2(q1, n)1/2(q2, n)1/2. (6.18)

But an elementary argument provides the estimate∑
1≤n≤N

(q1, n)1/2(q2, n)1/2 ≤ d(q1)d(q2)N, (6.19)

and hence, on taking θ = 1/6, one finds from (6.18) together with an elementary estimate for the divisor
function that

E(N,X)� NX−1/3
( ∑

1≤q≤X

q̃−1q−1/6
)2

. (6.20)

Moreover,
∞∑
q=1

q̃−1q−1/6 ≤
∏
p

(
1 +

∞∑
h=1

p−1−h/6
)
� 1. (6.21)

We now collect together (6.3)-(6.5), (6.17), (6.20) and (6.21) to conclude thus far that

∑
N/2<n≤N

∣∣∣R∗k(n; [0, 1))− J∗k (n)
∑

1≤q≤X

S∗k(q, n)
∣∣∣2� N1+2/k−δ +N1+2/kX−1/3. (6.22)
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Next we complete the singular series. Write

S∗k(n) =

∞∑
q=1

S∗k(q, n), (6.23)

and
E(n,X) = S∗k(n)−

∑
1≤q≤X

S∗k(q, n). (6.24)

Then on applying the estimates (6.10), (6.16), (6.19) and (6.21) we obtain from (6.23) the upper bound

∑
N/2<n≤N

|E(n,X)J∗k (n)|2 � N2/k
∑

N/2<n≤N

∣∣∣∑
q>X

(q/X)1/6S∗k(q, n)
∣∣∣2

� N2/kX−1/3
∑

1≤n≤N

∞∑
q1=1

∞∑
q2=1

(q̃1q̃2)−1(q1q2)ε−1/3(q1, n)1/2(q2, n)1/2

� N1+2/kX−1/3.

We therefore conclude from (6.22) and (6.24) that∑
N/2<n≤N

|R∗k(n; [0, 1))−S∗k(n)J∗k (n)|2 � N1+2/k−δ. (6.25)

The estimation of the singular integral defined in (6.8) may be completed as in the argument of the
proof of Theorem 2 leading to (4.19). Thus we obtain for each n satisfying N/2 < n ≤ N the lower
bound

J∗k (n)� N1/k. (6.26)

We analyse the singular series in a manner also similar to the corresponding treatment in the argument
of the proof of Theorem 2. First note that by (6.16) and (6.23) one has

S∗k(n)−
∑

1≤q≤X

S∗k(q, n)�
∑
q>X

(q/X)1/6S∗k(q, n)

� X−1/6
∑
q>X

q̃−1qε−1/3(q, n)1/2

� n1/2X−1/6,

so that the series S∗k(n) is absolutely convergent. Further, from (6.15) one has that for each prime
number p,

∞∑
h=0

S∗k(ph, n) = 1 +O(n1/2p−3/2),

so that we may use the standard theory of series of multiplicative functions to conclude that

S∗k(n) =
∏
p

T ∗k (p, n), (6.27)

where

T ∗k (p, n) =

∞∑
h=0

S∗k(ph, n). (6.28)

Write
Φ∗(γ) = γ4

1 + γ4
2 + γk3 + 2(γ2

4 + 3γ2
5)2,

and denote by M∗k,n(q) the number of solutions of the congruence

Φ∗(z) ≡ n (mod q),
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with 1 ≤ zi ≤ q (1 ≤ i ≤ 5). Then by the argument of the proof of [21, Lemma 2.12], one has for each
H ≥ 1,

H∑
h=0

S∗k(ph, n) = p−4HM∗k,n(pH). (6.29)

It follows that T ∗k (p, n) is real and non-negative, whence the same holds for S∗k(n).
Next consider the contribution to S∗k(n) from those primes p in the product (6.27) with p - n. Then

from (6.28) and (6.15) we have

T ∗k (p, n) = 1 +O(p−3/2),

whence, for some positive constant C, one has

1
2 ≤

∏
p≥C
p-n

T ∗k (p, n) ≤ 2. (6.30)

When p > 3, we may apply the Cauchy-Davenport Theorem to obtain useful bounds. Note first that
when p - m, one has

p∑
y=1

(
1 +

(
m− 3y2

p

))
= p−

(
−3

p

)
≥ 4,

so that every non-zero residue class m is represented by the form x2 + 3y2, and moreover the zero
residue class is plainly represented in the latter form. Next observe that for each natural number k, the
monomial zk represents 0 and 1 modulo p. Then the Cauchy-Davenport Theorem (see, for example, [21,
Lemma 2.14]) shows that the number of distinct residue classes modulo p represented by the polynomial

y4
1 + y4

2 + yk3 + 2w2, (6.31)

subject to (y1, p) = 1, is at least

min

{
p , 2

p− 1

(4, p− 1)
+ 1

2 (p− 1) + 1

}
= p.

Thus every residue class modulo p is represented by the polynomial (6.31) with (y1, p) = 1, so that in
view of our earlier observation, it follows that for every integer n, when p > 3 there is a solution of the
congruence

Φ∗(z) ≡ n (mod pγ),

with (z1, p) = 1. Here γ is defined as in (4.26). Observe also that the polynomial y4
1 + y4

2 + 2(u2 + 3v2)2

plainly represents all residue classes modulo 3 with (y1, 3) = 1. Further, we note that the polynomial
2(x2 + 3y2)2 represents the congruence classes 0 and 2 modulo 16. Also, when 2 - k, the set of values
taken by the monomial wk includes, at least, the residue classes 0 and 2r − 1 modulo 16 (1 ≤ r ≤ 8),
and when 2‖k the set of values includes, at least, the residue classes 0, 1 and 9 modulo 16, and when
4|k the corresponding set consists only of 0 and 1 modulo 16. Then a little thought reveals that Φ∗(z)
represents every residue class modulo 16 when 2 - k, represents the residue classes r and 8 + r modulo
16 for 1 ≤ r ≤ 5 when 2‖k, and when 4|k represents the residue class r modulo 16 for 1 ≤ r ≤ 5.
Furthermore, in all of these representations except for the representation of the residue class 9 modulo
16 when 2‖k, one may take z1 to be odd. Moreover, in the latter exceptional case one may take z3 to
be odd.

Then in all cases, with the aforementioned exception, one may follow the argument completing the
proof of Theorem 2 to conclude that whenever n lies in the relevant congruence classes modulo 16, one
has for every prime p and natural number H,

M∗k,n(pH) ≥ p4(H−γ) � p4H ,

whence (6.28) and (6.29) together show that

T ∗k (p, n) =

∞∑
h=0

S∗k(ph, n)� 1. (6.32)
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Moreover, in the exceptional case one may again argue as in the completion of the proof of Theorem 2,
save that we now choose integers xi with xi ≡ zi (mod 2γ) for i = 1, 2, 4, 5, and then solve the ensuing
congruence Φ(x) ≡ n (mod 2H) for x3. Thus, with modest adjustments to the argument, one again
establishes the lower bound (6.32) even in the exceptional case under consideration. Combining the
lower bound (6.32) with (6.30), we conclude that there is an absolute constant A > 0 such that

S∗k(n) ≥ 1
2A

C
∏
p|n

A� Aω(n) � N−δ/4.

Finally, we recall (6.25) and (6.26), and conclude that for each n with N/2 < n ≤ N in the aforemen-
tioned residue classes modulo 16, one has

R∗k(n; [0, 1))� N1/k−δ/4

with at most O(N1−δ/2) possible exceptions. On summing over the dyadic intervals spanning [1, N ],
and noting (6.3), we find that Theorem 4 follows.

7. Mixed sums of cubes and biquadrates

In this section we establish the results contained in part (a) of Theorem 5, and we also prepare
the field for our assault on the proof of part (b) in §8 below. We begin by dismissing part (iii) of
Theorem 5(a) almost trivially by recourse to Brüdern [2, Theorem 1]. Consider a large natural number

N , and let r(N) denote the number of distinct integers of the form N −
∑5
i=1m

4
i with 1 ≤ mj ≤ 1

2N
1/4

(1 ≤ j ≤ 5). Then by Theorem 1 of this paper, one has r(N) � N(logN)−2, and so [2, Theorem
1] shows that almost all of the integers thus represented are the sum of 3 cubes and a biquadrate.
Consequently N is represented as the sum of 3 cubes and 6 biquadrates.

In order to describe the proof of parts (i) and (ii) of Theorem 5(a) we require some additional
notation, and this will be useful also in §8. Take N to be a large integer, and define Pk as in (3.2). We

then write M = P21 = P
1/7
3 , and define the exponential sum F (α) by

F (α) =
∑

M<p≤2M

∑
P3/(2p)≤x≤P3/p

e(α(px)3).

Our Hardy-Littlewood dissection is defined as follows. We put X = N1/100, and when a ∈ Z, q ∈ N
and (a, q) = 1, we write

M(q, a) = {α ∈ [0, 1) : |α− a/q| ≤ XN−1}.

We take M to be the union of the intervals M(q, a) with 0 ≤ a ≤ q ≤ X and (a, q) = 1, and write
m = [0, 1) \M. Note that the intervals M(q, a) comprising M are pairwise disjoint.

In order to establish the remaining parts of Theorem 5 we require a reasonably strong mean value
estimate for the cubic exponential sum F (α).

Lemma 7.1. We have ∫
m

|F (α)|8dα� P 5+ε
3 X−1/3. (7.1)

Proof. We establish the upper bound (7.1) by means of the Hardy-Littlewood method, and begin by
recalling some estimates of use on the major and minor arcs. First, by considering the underlying
diophantine equations, it follows from [4, Lemma 6] that∫ 1

0

|F (α)|6dα� P
7/2+ε
3 M−3/2. (7.2)

Moreover, when α ∈ R, a ∈ Z and q ∈ N satisfy (a, q) = 1, q ≤ N1/2 and |qα − a| ≤ N−1/2, it follows
from [3, Lemma 6] that

F (α)� P
3/4+ε
3 M1/4 + P 1+ε

3 (q +N |qα− a|)−1/3. (7.3)
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We next describe the Hardy-Littlewood dissection. Recall the notation concluding §3, and put Q =
(P3M

−1)3/4. Suppose first that α ∈ m(Q). By Dirichlet’s Theorem on diophantine approximation,
there exist a ∈ Z, q ∈ N with (a, q) = 1, q ≤ N1/2 and |qα − a| ≤ N−1/2. But α 6∈ M(Q), so that
necessarily one has either |qα− a| > QN−1 or else q > Q. Then it follows from (7.3) that

sup
α∈m(Q)

|F (α)| � P
3/4+ε
3 M1/4,

whence by (7.2), ∫
m(Q)

|F (α)|8dα�
(

sup
α∈m(Q)

|F (α)|
)2
∫ 1

0

|F (α)|6dα� P 5+ε
3 M−1. (7.4)

Next we note that if α ∈ M(Q) ∩ m, then there exist a ∈ Z and q ∈ N with (a, q) = 1, q ≤ Q and
|qα − a| ≤ QN−1. But since α ∈ m, one must have either |α − a/q| > XN−1 or else q > X. Thus we
deduce from (7.3) that

sup
α∈M(Q)∩m

|F (α)| � P 1+ε
3 X−1/3.

Consequently, on noting that when α ∈M(Q) the second term on the right hand side of (7.3) dominates
the first, we obtain∫

M(Q)∩m
|F (α)|8dα�

(
sup

M(Q)∩m
|F (α)|

)∫
M(Q)

|F (α)|7dα

� P 8+ε
3 X−1/3

∑
1≤q≤Q

q∑
a=1

(a,q)=1

q−7/3

∫ ∞
0

(1 +Nβ)−7/3dβ

� P 5+ε
3 X−1/3. (7.5)

The proof of the lemma is completed by combining (7.4) and (7.5).

The proof of part (i) of Theorem 5(a). Let N be a large natural number, and write R1(N) for the
number of representations of N in the form

N =
2∑
i=1

(
(xi + yi)

4 + (xi − yi)4 + (2yi)
4
)

+
3∑
j=1

z4
j + (px)3, (7.6)

with
P/4 ≤ xi, yi ≤ P and xi 6= yi (i = 1, 2), 1 ≤ zj ≤ P (1 ≤ j ≤ 3), (7.7)

M < p ≤ 2M and P3/(2p) ≤ x ≤ P3/p.

We aim to establish that R1(N) > 0, whence by (7.6) the integer N is represented as the sum of 9
biquadrates and a cube. When B ⊆ [0, 1), define

R1(N ;B) =

∫
B

g(α)2f4(α)3F (α)e(−Nα)dα. (7.8)

Then by (7.6), (3.1) and (3.3) we have

R1(N) = R1(N ; [0, 1)) = R1(N ;M) +R1(N ;m). (7.9)

We begin by treating the minor arcs. Applying Hölder’s inequality to (7.8) in combination with
Lemmata 3.4, 3.5 and 7.1, we obtain

R1(N ;m) ≤
(∫ 1

0

|g(α)2f4(α)4|dα
)3/4(∫ 1

0

|g(α)|4dα
)1/8(∫

m

|F (α)|8dα
)1/8

� N13/12+εX−1/24. (7.10)
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We now turn our attention to the estimation of R1(N ;M). Suppose that α ∈ R, a ∈ Z and q ∈ N
satisfy (a, q) = 1 and q ≤ X, and write β = α− a/q. We note that when M < p ≤ 2M , one has p > X,
and so (ap3, q) = 1. It therefore follows from [21, Theorem 4.1] that in such circumstances, one has

∑
P3/(2p)≤x≤P3/p

e((px)3α)−q−1S3(q, ap3)

∫ P3/p

P3/(2p)

e(βp3t3)dt

� q1/2+ε(1 +N |β|)1/2. (7.11)

Write

ṽ3(β) =

∫ P3

P3/2

e(βt3)dt. (7.12)

Then by a change of variable, the integral in (7.11) is equal to p−1ṽ3(β). Moreover, in view of the
coprimality of p and q, one has S3(q, ap3) = S3(q, a). Consequently, when α ∈M(q, a) ⊆M, it follows
from (7.11) that

F (α) = Ξq−1S3(q, a)ṽ3(α− a/q) +O(MX1+ε), (7.13)

where

Ξ = Ξ(M) =
∑

M<p≤2M

p−1 � (logN)−1. (7.14)

For future use, we define the function T (α) by

T (α) =

{
Ξq−1S3(q, a)ṽ3(α− a/q), when α ∈M(q, a) ⊆M,

0, otherwise,
(7.15)

and modify the definitions (4.6) and (4.7) by defining

V (α) =

{
q−1S4(q, a)v4(α− a/q), when α ∈M(q, a) ⊆M,

0, otherwise,
(7.16)

and

W (α) =

{
q−2S(q, a)v(α− a/q), when α ∈M(q, a) ⊆M,

0, otherwise.
(7.17)

Recalling the estimates provided by (7.13) and Lemmata 3.1 and 3.3, one has for each α ∈M(q, a) ⊆
M the upper bound

g(α)2f4(α)3F (α)−W (α)2V (α)3T (α)� X2P 6P3 +X1+εMP 7.

Since M has measure O(X3N−1), we conclude from (7.8), (7.9) and (7.10) that

R1(N)− ΞJ∗1 (N)
∑

1≤q≤X

S1(q,N)� N13/12+εX−1/24, (7.18)

where

S1(q,N) = q−8

q∑
a=1

(a,q)=1

S(q, a)2S4(q, a)3S3(q, a)e(−Na/q), (7.19)

and

J∗1 (N) =

∫ X/N

−X/N
v(β)2v4(β)3ṽ3(β)e(−Nβ)dβ. (7.20)

But on writing

J1(N) =

∫ ∞
−∞

v(β)2v4(β)3ṽ3(β)e(−Nβ)dβ, (7.21)
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we find from (7.12) and Lemmata 3.1 and 3.3 that J1(N) is absolutely convergent, and, moreover, it
follows from (7.20) and (7.21) that

J1(N)− J∗1 (N)� N25/12

∫ ∞
X/N

(1 +Nβ)−37/12dβ � N13/12X−2. (7.22)

Furthermore, a straightforward application of Fourier’s integral formula demonstrates that J1(N) �
N13/12, so that together with (7.22) we have

N13/12 � J1(N)� N13/12. (7.23)

Next write

S1(N) =
∞∑
q=1

q−8

q∑
a=1

(a,q)=1

S(q, a)2S4(q, a)3S3(q, a)e(−Na/q),

and note that by (7.19) together with Lemmata 3.1 and 3.3, we have

|S1(q,N)| � qε−13/12, (7.24)

so that
S1(N)−

∑
1≤q≤X

S1(q,N)�
∑
q>X

|S1(q,N)| � Xε−1/12.

We may therefore conclude from (7.18), (7.22) and (7.23) that

R1(N)− ΞJ1(N)S1(N)� N13/12+εX−1/24. (7.25)

Provided now that we can show that S1(N) � 1, it will follow from (7.14), (7.23) and (7.25) that
R1(N) � N13/12(logN)−1, and so the proof of part (i) of Theorem 5(a) will be complete. But on
noting that for each prime number p the estimate (7.24) yields

∞∑
h=0

S1(ph, N) = 1 +O(pε−13/12), (7.26)

we may apply the argument employed in §4 to analyse the singular series, mutatis mutandis, and thereby
obtain S1(N)� 1. The only detail not already transparent concerns the solubility, for small primes p,
of the congruence

z4
1 + z4

2 + z4
3 + z3

4 + 2(z2
5 + 3z2

6)2 + 2(z2
7 + 3z2

8)2 ≡ N (mod pγ), (7.27)

where γ = γ(p) again denotes the integer defined in (4.26). But the Cauchy-Davenport Theorem (see
[21, Lemma 2.14]) shows that when p > 3, the number of residue classes modulo p represented by the
polynomial

y4
1 + y4

2 + y4
3 + w3,

subject to (y1, p) = 1, is at least

min

{
p, 3

p− 1

(4, p− 1)
+

p− 1

(3, p− 1)

}
= p.

Thus for each N the congruence (7.27) is soluble with (z1, p) = 1. The latter conclusion is immediate
when p = 3, and also follows easily when p = 2 on noting that w3 represents all of the odd congruence
classes modulo 16. Consequently, as in the conclusion of §4, we find that

∑∞
h=0 S1(ph, N) is real and

positive for every integer N and prime p, and in combination with (7.26) we obtain the desired conclusion
that S1(N)� 1.

The proof of part (ii) of Theorem 5(a) is similar to that of part (i), though in many respects simpler,
and we therefore omit the uninteresting details.
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The proof of part (ii) of Theorem 5(a). Let N be a large natural number, and write R2(N) for the
number of representations of N in the form

N =

2∑
i=1

(
(xi + yi)

4 + (xi − yi)4 + (2yi)
4
)

+ z4
1 + z4

2 + (p1w1)3 + (p2w2)3, (7.28)

with xi, yi, zi satisfying (7.7) for i = 1, 2, and

M < pj ≤ 2M and P3/(2pj) ≤ wj ≤ P3/pj (j = 1, 2).

Then by (3.1) and (3.3) we have

R2(N) =

∫ 1

0

g(α)2f4(α)2F (α)2e(−Nα)dα. (7.29)

We aim to show that R2(N) > 0, whence by (7.28) the integer N is represented as the sum of 8
biquadrates and two cubes. When B ⊆ [0, 1), define

R2(N ;B) =

∫
B

g(α)2f4(α)2F (α)2e(−Nα)dα. (7.30)

Then by (7.28), (7.29), (3.1) and (3.3) we have

R2(N) = R2(N ; [0, 1)) = R2(N ;M) +R2(N ;m). (7.31)

Observe first that by applying Hölder’s inequality to (7.29) in combination with Lemmata 3.4, 3.5
and 7.1, we have

R2(N ;m) ≤
∫
m

|g(α)f4(α)F (α)|2dα

≤
(∫ 1

0

|g(α)2f4(α)4|dα
)1/2(∫ 1

0

|g(α)4|dα
)1/4(∫

m

|F (α)|8dα
)1/4

� N7/6+εX−1/12. (7.32)

Next, on recalling the notation defined by (7.15)-(7.17) and making use of (7.13) and Lemmata 3.1 and
3.3, we deduce that when α ∈M(q, a) ⊆M, one has the upper bound

g(α)2f4(α)2F (α)2 −W (α)2V (α)2T (α)2 � X2P 5P 2
3 +X1+εMP3P

6.

Consequently, since M has measure O(X3N−1), it follows from (7.30)-(7.32) that

R2(N)− Ξ2J∗2 (N)
∑

1≤q≤X

S2(q,N)� N7/6+εX−1/12, (7.33)

where Ξ is defined as in (7.14),

S2(q,N) = q−8

q∑
a=1

(a,q)=1

S(q, a)2S4(q, a)2S3(q, a)2e(−Na/q),

and

J∗2 (N) =

∫ X/N

−X/N
v(β)2v4(β)2ṽ3(β)2e(−Nβ)dβ.

In the present problem we have a cubic summand in place of the biquadratic summand occurring
in the argument of the proof of part (i), and this causes more rapid convergence in both J∗i (N) and
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Si(q,N) when i = 2 as compared to the situation with i = 1. Thus the argument of the proof of part
(i) of Theorem 5(a) is readily adapted to establish that

N7/6 � J∗2 (N)� N7/6, (7.34)

and
S2(N)−

∑
1≤q≤X

S2(q,N)� Xε−1/6, (7.35)

where we write

S2(N) =

∞∑
q=1

q−8

q∑
a=1

(a,q)=1

S(q, a)2S4(q, a)2S3(q, a)2e(−Na/q).

The aforementioned argument is also readily adapted to show that S2(N)� 1. The only detail which
requires verification concerns the solubility, for small primes p, of the congruence

z4
1 + z4

2 + z3
3 + z3

4 + 2(z2
5 + 3z2

6)2 + 2(z2
7 + 3z2

8)2 ≡ N (mod pγ). (7.36)

But when p > 3, the Cauchy-Davenport Theorem (see [21, Lemma 2.14]) demonstrates that (7.36) is
soluble with (z1, p) = 1, and moreover such a conclusion may be verified directly when p = 2 or 3.
Thus, as in the argument of the proof of part (i) of Theorem 5(a), we find that S2(N)� 1, whence by
(7.33), (7.34) and (7.35) we may conclude that

R2(N)� N7/6(logN)−2.

This completes the proof of part (ii) of Theorem 5(a).

8. Sums of 4 biquadrates and a cube

Experts will recognise that Theorem 5(b) may be expected to follow directly from the argument of
the proof of part (ii) of Theorem 5(a) via a suitable application of Bessel’s inequality. In this instance,
however, our use of the identity (3.1) leaves us in a ternary additive situation, and consequently the
analysis of the associated singular series presents considerable technical complications. We arm ourselves
in advance of such skirmishes with some useful technical lemmata.

When q and n are natural numbers, write

A(q, n) = q−4

q∑
a=1

(a,q)=1

S(q, a)S4(q, a)S3(q, a)e(−na/q). (8.1)

Lemma 8.1. When p is a prime number and h is a natural number, one has

A(ph, n)� hp−h/12.

Moreover, when 1 ≤ h ≤ 12, one has the potentially sharper estimate

A(ph, n)� p−1(p, n)1/2.

Proof. The first estimate of the lemma is easily established by applying Lemmata 3.1 and 3.3 to (8.1),
thus obtaining

A(ph, n)� p−4hφ(ph)(hp3h/2)(p3h/4)(p2h/3)� hp−h/12.

We next establish the second estimate, noting first that the argument of §6 leading to (6.12) on this
occasion yields, for each natural number q, the estimate

φ(q)A(q, n) =

q∑
l=1

(l,q)=1

A(q, l12n) = q−4

q∑
a=1

(a,q)=1

S(q, a)S4(q, a)S3(q, a)U(q,−na), (8.2)
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where

U(q, b) =

q∑
l=1

(l,q)=1

e(bl12/q).

On applying [11, Lemma 1.2], one finds that the estimate (6.14) remains valid, and thus whenever
(a, p) = 1 one has

U(ph,−na)� ph/2(ph, n)1/2 ≤ ph−1/2(p, n)1/2. (8.3)

Moreover, Lemma 3.3 shows that whenever (a, p) = 1 one has S(ph, a) � hp3h/2, and Lemma 3.2
provides the estimates

S4(ph, a)� prh and S3(ph, a)� psh , (8.4)

where r1 = s1 = 1/2, r2 = s2 = 1, r3 = s3 = 2, r4 = 3 and s4 = 5/2, r5 = 7/2 and s5 = 3, and where
rh = 3h/4 and sh = 2h/3 for h ≥ 6. On substituting (8.3) and (8.4) into (8.2), we obtain

A(ph, n)� hpth(p, n)1/2,

where th = rh + sh − (3h+ 1)/2. When 1 ≤ h ≤ 5 it is easily verified by hand that th ≤ −1, and when
h ≥ 6 one has

th = − h

12
− 1

2
≤ −1.

Thus th ≤ −1 for every natural number h, and the second part of the lemma follows immediately.

Armed with the estimate for A(q, n) provided by Lemma 8.1, we next investigate the convergence
of a truncated form of the singular series which arises in our subsequent investigations. When n is a
natural number and Z is a positive real number, we write

T (p, n) =
∞∑
h=0

A(ph, n), (8.5)

and
P(n,Z) =

∏
p≤Z

T (p, n). (8.6)

Lemma 8.2. Let N be a large real number. Then whenever Z is a large real number with Z ≤ N , and
n is a natural number with 1 ≤ n ≤ N , one has

P(n,Z)� exp(−
√

logN).

Proof. We begin by investigating the contribution of the large primes to the product (8.6). By Lemma
8.1, we have

∞∑
h=1

|A(ph, n)| �
11∑
h=1

p−1(p, n)1/2 +
∞∑

h=12

hp−h/12 � p−1(p, n)1/2,

whence by (8.5) there exists an absolute constant B such that

|T (p, n)− 1| ≤ Bp−1(p, n)1/2.

But the latter estimate yields∏
2B2≤p≤Z

T (p, n) ≥
∏

2B2≤p≤Z

(1−Bp−1)
∏

p≥2B2

p|n

(1−Bp−1/2). (8.7)

It follows from Merten’s formula (see, for example, [7]) that the first product on the right hand side of
(8.7) is � (logZ)−B . Meanwhile, on noting that by the Prime Number Theorem one has

∑
p|n

p−1/2 ≤
∑

p≤2 logN

p−1/2 �
√

logN

log logN
, (8.8)
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and moreover that log(1− x) > −4x for 0 < x ≤ 1/
√

2, we deduce that∏
p≥2B2

p|n

(1−Bp−1/2) > exp
(
−4B

∑
p|n

p−1/2
)
� exp(−ε

√
logN).

Consequently, we may conclude from (8.7) that∏
2B2≤p≤Z

T (p, n)� exp(−ε
√

logN). (8.9)

In order to establish the lower bound for P(n,Z) claimed in the statement of the lemma, it suffices
now to show that T (p, n) � 1 for the primes p with p < 2B2. But, as in the argument of §6, one has
for each natural number H,

H∑
h=0

A(ph, n) = p−3HM∗n(pH), (8.10)

where M∗n(pH) denotes the number of solutions of the congruence

2(x2 + 3y2)2 + z4 + w3 ≡ n (mod pH), (8.11)

with 1 ≤ x, y, z, w ≤ pH . Thus we may follow the argument of §6 to show that M∗n(pH)� p3H provided
only that when H = γ, the congruence (8.11) is soluble with (z, p) = 1. Moreover the same conclusion
M∗n(pH)� p3H holds also when p = 2 provided that (8.11) is soluble when H = γ with w odd.

Suppose first that p > 3, and note that the discussion of §6 leading to (6.31) shows that the polynomial
x2 +3y2 represents all residue classes modulo p. Then the Cauchy-Davenport Theorem (see [21, Lemma
2.14]) shows that the number of distinct residue classes represented by the polynomial

2(x2 + 3y2)2 + z4 + w3,

subject to (z, p) = 1, is at least min{p, κ(p)}, where

κ(p) =
p− 1

2
+

p− 1

(4, p− 1)
+

p− 1

(3, p− 1)

=

(
1

2
+

1

(3, p− 1)
+

1

(4, p− 1)

)
(p− 1). (8.12)

When p ≥ 13, therefore, one has

κ(p) ≥ 13

12
(p− 1) ≥ p,

and moreover one may verify from (8.12) that κ(p) ≥ p also when p = 5, 7 and 11. We may thus
conclude that for each natural number n, the congruence (8.11) is soluble when H = γ with (z, p) = 1.
Furthermore, when p = 3 the latter conclusion is essentially trivial, and thus we deduce that M∗n(pH)�
p3H whenever p > 2. When p = 2 we note merely that w3 represents all of the odd congruence classes
modulo 16, and so the congruence (8.11) is necessarily soluble with w odd. Thus, as in the argument
following (6.32), we again deduce that M∗n(2H) � 23H . Collecting together the conclusions of this
paragraph, we may conclude from (8.10) that

T (p, n) = lim
H→∞

H∑
h=0

A(ph, n)� 1

for every prime p, whence the conclusion of the lemma follows immediately from (8.9).

Having established a lower bound for a truncated product associated with the singular series, we
next investigate a related truncated sum. When n is a natural number and X is a large real number,
write

S(n,X) =
∑

1≤q≤X

A(q, n). (8.13)
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Lemma 8.3. Suppose that N is a large real number, and let X = N1/100. Then for all but O(N exp(−
√

logN))
of the integers n with N/2 ≤ n ≤ N , one has

S(n,X)� exp(−
√

logN).

Proof. It follows from the standard theory of exponential sums (see, for example, the proofs of Lemmata
2.10 and 2.11 of [21]) that A(q, n) is a multiplicative function of q. Write Y = exp(

√
logN), put

Z = Y 50, and define
D = D(Z) = {q ∈ N : p|q ⇒ p ≤ Z}.

Suppose that n is a natural number with N/2 ≤ n ≤ N . Then on recalling (8.6) and (8.13), we have

S(n,X)− P(n,Z) = S1(n)−S2(n), (8.14)

where
S1(n) =

∑
Z<q≤X
q 6∈D

A(q, n) and S2(n) =
∑
q>X
q∈D

A(q, n). (8.15)

We first estimate S2(n). Put η = 300/
√

logN . Then for q > X we have 1 < (q/X)η = qηY −3, and
thus the multiplicative property of A(q, n) ensures that

|S2(n)| < Y −3
∑
q∈D

qη|A(q, n)| = Y −3
∏
p≤Z

( ∞∑
h=0

phη|A(ph, n)|
)
. (8.16)

But when p ≤ Z, Lemma 8.1 yields the estimate

∞∑
h=0

phη|A(ph, n)| − 1� p−1+12η(p, n)1/2 � p−1(p, n)1/2,

and thus it follows from (8.8) and (8.16) that for some absolute constant B,

|S2(n)| < Y −3
∏
p≤Z

(1 +Bp−1)
∏
p|n

(1 +Bp−1/2)� Y −2. (8.17)

Next we turn our attention to S1(n). For the sake of concision, write

S̃(q, a) = S(q, a)S4(q, a)S3(q, a).

Also, denote by ‖β‖ the distance between β and the nearest integer. Then by (8.1) and (8.15) we have∑
N/2≤n≤N

|S1(n)|2 =
∑

Z<q≤X
q 6∈D

∑
Z<r≤X
r 6∈D

(qr)−4V (q, r), (8.18)

where

V (q, r) =

q∑
a=1

(a,q)=1

r∑
b=1

(b,r)=1

S̃(q, a)S̃(r,−b)
∑

N/2≤n≤N

e
(( b

r
− a

q

)
n
)
. (8.19)

When q ≤ X, r ≤ X and a/q 6= b/r, one has∥∥∥∥aq − b

r

∥∥∥∥ ≥ (qr)−1 ≥ X−2,

and in such circumstances the innermost sum in (8.19) is O(X2). Thus we deduce from (8.18) that

∑
N/2≤n≤N

|S1(n)|2 �N
∑

Z<q≤X

q−8

q∑
a=1

(a,q)=1

|S̃(q, a)|2

+X2
( ∑
Z<q≤X

q−4

q∑
a=1

(a,q)=1

|S̃(q, a)|
)2

.
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But Lemmata 3.1 and 3.3 provide the estimate S̃(q, a)� q35/12+ε, and so

∑
N/2≤n≤N

|S1(n)|2 � N
∑
q>Z

qε−7/6 +X2
( ∑

1≤q≤X

qε−1/12
)2

� NZε−1/6 +X4 � NY −5. (8.20)

Note that (8.20) implies that |S1(n)| ≤ Y −2 for all but O(NY −1) values of n with N/2 ≤ n ≤ N .
Thus, on collecting together (8.14), (8.17), (8.20), and recalling Lemma 8.2, we deduce that

S(n,X)� exp(−
√

logN) +O(Y −2)

for all but O(NY −1) values of n with N/2 ≤ n ≤ N . This completes the proof of the lemma.

Our analysis of the truncated singular series now complete, we may swiftly dispose of the proof of
Theorem 5(b).

The proof of Theorem 5(b). Let N be a large real number, let n be a natural number with N/2 ≤ n ≤ N ,
and let R3(n) denote the number of representations of n in the form

n = (x+ y)4 + (x− y)4 + (2y)4 + z4 + (pw)3, (8.21)

with
P/4 ≤ x, y ≤ P and x 6= y, 1 ≤ z ≤ P,

M < p ≤ 2M and P3/(2p) ≤ w ≤ P3/p.

We will show that R3(n) > 0 for each n with N/2 ≤ n ≤ N , save for at most O(N exp(−
√

logN))
possible exceptions. By summing over dyadic intervals, it follows from the latter assertion, together with
(8.21), that almost all positive integers are the sum of four biquadrates and a cube, whence Theorem
5(b) follows. When B ⊆ [0, 1), define

R3(n;B) =

∫
B

g(α)f4(α)F (α)e(−nα)dα. (8.22)

Then by (8.21), (3.1) and (3.3) we have

R3(n) = R3(n; [0, 1)) = R3(n;M) +R3(n;m). (8.23)

We first treat the minor arcs m, noting that an application of Bessel’s inequality combined with
(7.32) yields ∑

N/2≤n≤N

|R3(n;m)|2 ≤
∫
m

|g(α)f4(α)F (α)|2dα� N7/6+εX−1/12. (8.24)

Next, on recalling the notation defined by (7.15)-(7.17), and making use of (7.13) and Lemmata 3.1 and
3.3, we deduce that when α ∈M(q, a) ⊆M, one has the upper bound

g(α)f4(α)F (α)−W (α)V (α)T (α)� X2P 2P3 +X1+εMP 3.

Then since M has measure O(X3N−1), it follows from (8.22)-(8.24) that∑
N/2≤n≤N

|R3(n)− ΞJ∗3 (n)S(n,X)|2 � N7/6+εX−1/12, (8.25)

where Ξ and S(n,X) are defined, respectively, as in (7.14) and (8.13), and

J∗3 (n) =

∫ X/N

−X/N
v(β)v4(β)ṽ3(β)e(−nβ)dβ. (8.26)
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Write

J3(n) =

∫ ∞
−∞

v(β)v4(β)ṽ3(β)e(−nβ)dβ.

Then by (7.12) and Lemmata 3.1 and 3.3, one has

J3(n)− J∗3 (n)� N13/12

∫ ∞
X/N

(1 +Nβ)−19/12dβ � N1/12X−1/2. (8.27)

Furthermore, a straightforward application of Fourier’s integral formula demonstrates that J3(n) �
N1/12, so that together with (8.27) we have

N1/12 � J3(n)� N1/12. (8.28)

But the inequality (8.25) shows that for every n satisfyingN/2 ≤ n ≤ N , with at mostO(N exp(−
√

logN))
exceptions, one has

R3(n)− ΞJ∗3 (n)S(n,X)� N1/12X−1/25.

Thus, since by (8.27) and (8.28) one has

J∗3 (n)� N1/12 +O(N1/12X−1/2),

and since by Lemma 8.3, one has for every n satisfying N/2 ≤ n ≤ N , with at most O(N exp(−
√

logN))
exceptions, the lower bound

S(n,X)� exp(−
√

logN),

we may conclude that for every integer n satisfying N/2 ≤ n ≤ N , with at most O(N exp(−
√

logN))
exceptions, one has

R3(n)� N1/12 exp(−2
√

logN).

Consequently the assertion made in the opening paragraph of this proof does indeed hold, and so the
proof of Theorem 5(b) is complete.

9. An application to a problem with prime variables

Our objective in this section is the proof of Theorem 7. Since the central variables under consideration
will now be prime numbers, it is necessary to introduce some additional notation. We take N to be the
large real parameter introduced in §3, and define the generating functions

f∗k (α) =
∑

1<p≤Pk

e(αpk) and g∗(α) =
∑

1≤m≤
√
N/3

m∈C

e(2m2α), (9.1)

where the first summation is over prime numbers, and C is the set of integers defined in (2.5). We require
an approximation to f∗k (α) on the major arcs of a Hardy-Littlewood dissection, and this is supplied in
all essentials by Hua [12]. When a ∈ Z, q ∈ N and β ∈ R, we write

S∗k(q, a) =

q∑
r=1

(r,q)=1

e(ark/q) and v∗k(β) =

∫ Pk

2

e(βtk)
dt

log t
. (9.2)

Lemma 9.1. Suppose that a ∈ Z, q ∈ N and β ∈ R, and that (a, q) = 1. Then

S∗k(q, a)� q1/2+ε and v∗k(β)� Pk(1 +N |β|)−1/k.

Suppose further that α ∈ R, and that for some fixed positive number A, one has |qα−a| ≤ (logN)AN−1

and q ≤ (logN)A. Then

f∗k (α) = φ(q)−1S∗k(q, a)v∗k(α− a/q) +O(Pk exp(−c
√

logN))
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for some c > 0, where here we write φ(q) for Euler’s totient function.

Proof. The lemma follows immediately from Lemmata 7.14-7.16 and 8.5 of [12].

Before fully engaging the proof, it is useful also to record a lower bound for an auxiliary singular
series. When m is a natural number, write

S∗k(m) =
∞∑
q=1

S∗k(q,m), (9.3)

where

S∗k(q,m) = φ(q)−5

q∑
a=1

(a,q)=1

S∗4 (q, a)4S∗k(q, a)e(−ma/q). (9.4)

Further, define the sets M(i) for i = 1, 2, 3 by

M(1) = {m ∈ N : m ≡ 1 (mod 2), m 6≡ 1 (mod 3) and m 6≡ −1 (mod 5)},

M(2) = {m ∈ N : m ≡ 5 (mod 8), m ≡ 2 (mod 3) and m ≡ 0 or 3 (mod 5)},

M(3) = {m ∈ N : m ≡ 5 (mod 16), m ≡ 2 (mod 3) and m ≡ 0 (mod 5)},

and when k is a natural number, define the set M∗k by

M∗k =


M(1), when k is odd,

M(2), when 2‖k,

M(3), when 4|k.

Lemma 9.2. For each natural number m one has S∗k(m) ≥ 0. Moreover, whenever m is a natural
number with m ∈M∗k and m 6≡ 1 (mod 13), one has S∗k(m)� 1.

Proof. We note first that by the standard theory of exponential sums, one has that S∗k(q,m) is a
multiplicative function of q (see [12, Lemma 8.1]). Moreover, on recalling the notation introduced
in (4.26), it follows from [12, Lemma 8.3] that S∗4 (ph, a) = 0 when (p, a) = 1 and h > γ(p). Thus
S∗k(ph,m) = 0 for h > γ(p), and so it follows from (9.3) that

S∗k(m) =
∏
p

T ∗k (p,m), (9.5)

where

T ∗k (p,m) =

γ(p)∑
h=0

S∗k(ph,m). (9.6)

Furthermore, on writing M∗k,m(p) for the number of solutions of the congruence

x4
1 + x4

2 + x4
3 + x4

4 + xk5 ≡ m (mod pγ), (9.7)

with 1 ≤ xj ≤ pγ and (xj , p) = 1 (1 ≤ j ≤ 5), it follows from (9.6) that

T ∗k (p,m) = pγφ(pγ)−5M∗k,m(p). (9.8)

In particular, therefore, one has for each prime p that T ∗k (p,m) is real and non-negative, whence
S∗k(m) ≥ 0. This completes the proof of the first assertion of the lemma.

We next dispose of the contribution of the large primes to S∗k(m). By applying the estimate supplied
by Lemma 9.1 within (9.4) and (9.6), one has

T ∗k (p,m) = 1 +O(pε−3/2).
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Thus there exists an absolute constant C such that

1
2 ≤

∏
p≥C

T ∗k (p,m) ≤ 2. (9.9)

In view of (9.5), therefore, it suffices to consider only the primes p with p < C. The primes p with p ≡ 3
(mod 4) satisfying 7 ≤ p < C may be dealt with via the Cauchy-Davenport Theorem (see [21, Lemma
2.14]). Thus it may be shown that the number of distinct residue classes modulo p represented by the
polynomial x4

1 + x4
2 + x4

3 + x4
4, with (xj , p) = 1 (1 ≤ j ≤ 4), is at least

min

{
p , 4

p− 1

(4, p− 1)
− 3

}
= min{p, 2p− 5} = p.

One therefore has, for each natural number m, the lower bound M∗k,m(p) ≥ 1, whence

T ∗k (p,m) ≥ p(p− 1)−5 � 1. (9.10)

Next suppose that p is a prime number with p ≡ 1 (mod 4). In this case we apply exponential
sums, noting that for each integer x with (x, p) = 1, the number of solutions of the congruence x4 ≡ y4

(mod p), with 1 ≤ y ≤ p− 1, is precisely 4. Thus, by orthogonality,

p−1∑
a=1

|S∗4 (p, a)|2 =

p∑
a=1

|S∗4 (p, a)|2 − (p− 1)2

= 4p(p− 1)− (p− 1)2 = (3p+ 1)(p− 1). (9.11)

Moreover, when (a, p) = 1, a trivial estimate yields

|S∗k(p, a)| ≤ p− 1, (9.12)

and further, Lemma 3.2 provides the upper bound

|S∗4 (p, a)| = |S4(p, a)− 1| ≤ 3
√
p+ 1. (9.13)

We therefore deduce from (9.4), (9.6) and (9.11)-(9.13) that

|T ∗k (p,m)− 1| ≤ (p− 1)−5

p−1∑
a=1

|S∗4 (p, a)4S∗k(p, a)|

≤ (p− 1)−4(3
√
p+ 1)2

p−1∑
a=1

|S∗4 (p, a)|2

≤ (p− 1)−3(3
√
p+ 1)2(3p+ 1).

A modest computation leads from here to the upper bound |T ∗k (p,m) − 1| < 9/10 whenever p ≥ 37,
whence, under the same conditions,

T ∗k (p,m) > 1/10. (9.14)

It remains to consider the primes p = 2, 3, 5, 13, 17 and 29. Note first that when p - m, the congruence
class m is represented by the polynomial

φ(x) = x4
1 + x4

2 + x4
3 + x4

4,

with (xj , p) = 1 (1 ≤ j ≤ 4), if and only if the congruence

x4
1 + x4

2 + x4
3 + x4

4 ≡ mx4
0 (mod p)
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is soluble with (xj , p) = 1 (0 ≤ j ≤ 4). Thus we may apply an exponential sum argument, similar to that
described in the previous paragraph, to show that each non-zero residue class modulo p is represented
by φ(x), with (xj , p) = 1 (1 ≤ j ≤ 4), provided only that

(p− 1)5 > (3
√
p+ 1)3(3p+ 1)(p− 1).

In particular, therefore, each non-zero residue class modulo 29 is represented by φ(x) in the desired
manner. Moreover, since 1, 7 and −9 are each biquadratic residues modulo 29, one finds that φ(x)
represents the zero residue class modulo 29, with (xj , 29) = 1 (1 ≤ j ≤ 4). Consequently, for every
natural number m one has M∗k,m(29) ≥ 1, whence by (9.8) it follows that the lower bound (9.10) holds
also when p = 29.

Next, on noting that ±1 and ±4 are biquadratic residues modulo 17, one may verify directly that
every residue class modulo 17 is represented by φ(x) with (xj , 17) = 1 (1 ≤ j ≤ 4). Consequently, for
every natural number m one has M∗k,m(17) ≥ 1, whence (9.10) holds also for p = 17. Also, since 1, 3
and 9 are biquadratic residues modulo 13, one may verify directly that every non-zero residue class is
represented by φ(x) with (xj , 13) = 1 (1 ≤ j ≤ 4). Thus, when p = 13 the congruence (9.7) is soluble
with (xj , 13) = 1 (1 ≤ j ≤ 5) for every natural number m, except possibly when m ≡ 1 (mod 13). It
follows that whenever m 6≡ 1 (mod 13) one has M∗k,m(13) ≥ 1, whence (9.10) holds for p = 13.

Finally we consider the primes 2, 3 and 5. Recall the definition (4.26). Then when m ∈ M∗k one
may verify directly for p = 2, 3 and 5 that the congruence (9.7) is soluble with (xj , p) = 1 (1 ≤ j ≤ 5).
Thus one has M∗k,m(p) ≥ 1 for p = 2, 3 and 5 whenever m ∈M∗k, whence (9.10) holds for these primes
p.

On combining the conclusions of the previous three paragraphs together with (9.10) and (9.14), we
conclude from (9.5) and (9.9) that S∗k(m)� 1 provided only that m 6≡ 1 (mod 13) and m ∈M∗k. This
completes the proof of the lemma.

Before proceeding with the main body of our argument, it is convenient to record a lower bound for
a counting function related to one employed in the proof of Theorem 6 in §2. When t ∈ N and a, b ∈ Z,
denote by ρ(m; t; a, b) the number of representations of m in the form m = x2 + xy + y2, with x and
y prime numbers satisfying the condition that (x + y)/2 is prime, and with x ≡ a (mod t) and y ≡ b
(mod t). It is useful also to define the set C(t; a, b) by

C(t; a, b) = {m ∈ N : ρ(m; t; a, b) > 0}.

Lemma 9.3. Suppose that t ∈ N and a, b ∈ Z satisfy (ab(a + b), t) = 1. Then when x is sufficiently
large in terms of t, one has ∑

1≤m≤x
ρ(m;t;a,b)>0

1�t x(log x)−7.

Proof. Recall the notation of the proof of Theorem 6 in §2, and suppose that t, a and b satisfy the
hypotheses of the statement of the lemma. Write ρ∗(m) for ρ(m; t; a, b). Then on noting (2.8), one
plainly has ∑

1≤m≤x

ρ∗(m)2 ≤
∑

1≤m≤x

ρ(m)2 ≤ R(x1/2)� x log x. (9.15)

But, as a modest elaboration of the lower bound (2.7) evidently within the compass of the Hardy-
Littlewood method, ∑

1≤m≤x

ρ∗(m) ≥
∑

h prime

1≤h≤ 1
2x

1/2

∑
p1,p2 primes
p1≡a (mod t)
p2≡b (mod t)
p1+p2=2h

1�t x(log x)−3. (9.16)

Then on combining Cauchy’s inequality with (9.15) and (9.16), one arrives at the conclusion∑
1≤m≤x
ρ∗(m)>0

1 ≥
( ∑

1≤m≤x

ρ∗(m)
)2( ∑

1≤m≤x

ρ∗(m)2
)−1

� x(log x)−7.
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This completes the proof of the lemma.

We note that in our application of Lemma 9.3 in the sequel we take t = 13, and thus the implicit
constants arising in the lower bound recorded in the statement of Lemma 9.3 are of no importance in
our subsequent deliberations.

The conditions are now favourable for us to embark on the proof of Theorem 7. Let k be a fixed
natural number with k ≥ 2, let Mk be the set of integers defined in the statement of Theorem 7, and
let n be an integer with n ∈Mk ∩ [N/2, N ]. Write R∗k(n) for the number of representations of n in the
form

n = 2m2
1 + 2m2

2 +

4∑
i=1

p4
i + pk5 ,

with m1,m2 ∈ C ∩ [1,
√
N/3], and with pj a prime number for 1 ≤ j ≤ 5. In view of the identity

(1.3) and the definition of the set C, it follows that whenever R∗k(n) > 0, the integer n possesses a
representation in the form (1.2). We put L = (logN)σ, with σ = 26k+7, and define M = M(L) and
m = m(L) as in the concluding paragraph of §3. When B ⊆ [0, 1), write

R∗k(n;B) =

∫
B

g∗(α)2f∗4 (α)4f∗k (α)e(−nα)dα. (9.17)

Then by (9.1) we have
R∗k(n) = R∗k(n; [0, 1)) = R∗k(n;M) +R∗k(n;m). (9.18)

We begin by estimating the contribution of the minor arcs m. According to [12, Theorem 10], one
has

sup
α∈m
|f∗k (α)| � Pk(logN)−100. (9.19)

On considering the diophantine equation underlying the mean value estimate (2.4), moreover, one has∫ 1

0

|g∗(α)2f∗4 (α)4|dα� N(logN)ε (9.20)

(an estimate which may be compared to that recorded in Lemma 3.4). Thus, on combining (9.19) and
(9.20) to estimate R∗k(n;m), we deduce from (9.17) that

R∗k(n;m) ≤ sup
α∈m
|f∗k (α)|

∫ 1

0

|g∗(α)2f∗4 (α)4|dα

� N1+1/k(logN)−99. (9.21)

We estimate the major arc contribution R∗k(n;M) by considering the tame major arc integral

T ∗k (m) =

∫
M

f∗4 (α)4f∗k (α)e(−mα)dα, (9.22)

noting that by (9.1) one has

R∗k(n;M) =
∑

1≤m1≤
√
N/3

m1∈C

∑
1≤m2≤

√
N/3

m2∈C

T ∗k (n− 2m2
1 − 2m2

2). (9.23)

When l is a natural number, define the function V ∗l (α) by

V ∗l (α) =

{
φ(q)−1S∗l (q, a)v∗l (α− a/q), when α ∈M(q, a) ⊆M,

0, otherwise.

Then by Lemma 9.1, one has for each α ∈M(q, a) ⊆M the upper bound

f∗4 (α)4f∗k (α)− V ∗4 (α)4V ∗k (α)� N1+1/k exp(−c
√

logN),
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for a suitable c > 0. Since the measure of M is O((logN)2σN−1), we deduce from (9.22) that for each
natural number m,

T ∗k (m)−
∫ 1

0

V ∗4 (α)4V ∗k (α)e(−mα)dα� N1/k(logN)−100,

whence
T ∗k (m) =

∑
1≤q≤L

S∗k(q,m)J∗k (q,m;N,L) +O(N1/k(logN)−100), (9.24)

where S∗k(q,m) is defined as in (9.4), and

J∗k (q,m;N,L) =

∫ q−1LN−1

−q−1LN−1

v∗4(β)4v∗k(β)e(−βm)dβ. (9.25)

Consider a fixed integer m with N/18 ≤ m ≤ N . On writing

J∗k (m) =

∫ ∞
−∞

v∗4(β)4v∗k(β)e(−βm)dβ, (9.26)

we deduce from (9.25) and Lemma 9.1 that whenever 1 ≤ q ≤ L, one has

J∗k (m)− J∗k (q,m;N,L)� N1+1/k

∫ ∞
q−1LN−1

(1 +Nβ)−1−1/kdβ

� N1/k(q/L)1/(2k). (9.27)

Furthermore, in view of Lemma 9.1 and (9.26), a straightforward application of Fourier’s integral formula
demonstrates that J∗k (m)� N1/k(logN)−5. Thus it follows from (9.25) and Lemma 9.1 that

N1/k(logN)−5 � J∗k (m)� N1/k. (9.28)

We next handle the truncated singular series. Recall the definition (9.3). Then by (9.4) and Lemma
9.1 one has

S∗k(m)−
∑

1≤q≤L

S∗k(q,m)�
∑
q>L

qε−3/2 � L−1/3.

Moreover, similarly, ∑
1≤q≤L

q1/(2k)|S∗k(q,m)| �
∑

1≤q≤L

q−1−1/(4k) � 1.

Consequently, on recalling (9.24), (9.27) and (9.28), we may conclude that

T ∗k (m)− J∗k (m)S∗k(m)� N1/k(logN)−100. (9.29)

We now recall (9.18), (9.21) and (9.23), and by means of (9.29) deduce that

R∗k(n) = Uk(n) +O(N1+1/k(logN)−99), (9.30)

where
Uk(n) =

∑
1≤m1≤

√
N/3

m1∈C

∑
1≤m2≤

√
N/3

m2∈C

S∗k(n− 2m2
1 − 2m2

2)J∗k (n− 2m2
1 − 2m2

2). (9.31)

On the one hand we have n ∈ Mk ∩ [N/2, N ], so that for each m1 and m2 in the latter summations,
one has

N/18 ≤ n− 2m2
1 − 2m2

2 ≤ N.

Thus we deduce from (9.28) that whenever m1 and m2 occur in the summation of (9.31), one has

J∗k (n− 2m2
1 − 2m2

2)� N1/k(logN)−5. (9.32)
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On the other hand, on observing that whenever m ∈ C, one has 2m2 ≡ 18 (mod 240), we find that
whenever n ∈ Mk and m1,m2 ∈ C, then it follows that n − 2m2

1 − 2m2
2 ∈ M∗k. Then it follows from

Lemma 9.2 that whenever m1,m2 ∈ C(13; 1, 1) and n 6≡ 11 (mod 13), then one has

S∗k(n− 2m2
1 − 2m2

2)� 1, (9.33)

and, moreover, whenever m1,m2 ∈ C(13; 2, 2) and n ≡ 11 (mod 13), then again it follows from Lemma
9.2 that the lower bound (9.33) holds. On substituting (9.32) and (9.33) into (9.31), we conclude from
Lemma 9.3 that whenever n ∈Mk ∩ [N/2, N ] and n 6≡ 11 (mod 13), then

Uk(n)�

( ∑
1≤m≤

√
N/3

m∈C(13;1,1)

1

)2

N1/k(logN)−5 � N1+1/k(logN)−19, (9.34)

and similarly, whenever n ∈Mk ∩ [N/2, N ] and n ≡ 11 (mod 13), then

Uk(n)�

( ∑
1≤m≤

√
N/3

m∈C(13;2,2)

1

)2

N1/k(logN)−5 � N1+1/k(logN)−19. (9.35)

On collecting together (9.30), (9.34) and (9.35), we finally deduce that whenever n ∈Mk ∩ [N/2, N ],
one has

R∗k(n)� N1+1/k(logN)−19.

The conclusion of Theorem 7 follows immediately.
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3. J. Brüdern, A sieve approach to the Waring-Goldbach problem. I. Sums of four cubes, Ann. Sci. École Norm. Sup.
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4. J. Brüdern and N. Watt, On Waring’s problem for four cubes, Duke Math. J. 77 (1995), 583–606.

5. J.-R. Chen, Waring’s problem for g(5) = 37, Sci. Sinica 13 (1964), 1547–1568.

6. H. Davenport, On Waring’s problem for fourth powers, Ann. of Math. 40 (1939), 731–747.

7. H. Davenport, Multiplicative number theory, 2nd ed. revised by H. L. Montgomery, Graduate Texts in Mathematics,

74, Springer-Verlag, Berlin, 1980.

8. J.-M. Deshouillers and F. Dress, Sums of 19 biquadrates: on the representation of large integers, Ann. Scuola Norm.
Sup. Pisa Cl. Sci. (4) 19 (1992), 113–153.

9. L. E. Dickson, History of the Theory of Numbers, vol. II, G. E. Stechert and Co., New York, 1934.

10. T. Estermann, On Goldbach’s problem: proof that almost all even positive integers are sums of two primes, Proc.

London Math. Soc. (2) 44 (1938), 307–314.

11. L.-K. Hua, On the representation of numbers as the sums of the powers of primes, Math. Z. 44 (1938), 335–346.

12. L.-K. Hua, Additive Theory of Prime Numbers., American Mathematical Society, Providence, Rhode Island, 1965.

13. K. Kawada and T. D. Wooley, Sums of fifth powers and related topics, Acta Arith. (in press).

14. G. Pall, The distribution of integers represented by binary quadratic forms, Bull. Amer. Math. Soc. 49 (1943),

447–449.

15. G. Tenenbaum, Fonctions ∆ de Hooley et applications, Progress in Math. vol. 63, Séminaire de Théorie des Nombres,
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